Python代码优化(比C慢20倍)

4 python math optimization performance

我写了这个非常优化的C代码,它做了一个简单的数学计算:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))


unsigned long long int p(int);
float fullCheck(int);

int main(int argc, char **argv){
  int i, g, maxNumber;
  unsigned long long int diff = 1000;

  if(argc < 2){
    fprintf(stderr, "Usage: %s maxNumber\n", argv[0]);
    return 0;
  }
  maxNumber = atoi(argv[1]);

  for(i = 1; i < maxNumber; i++){
    for(g = 1; g < maxNumber; g++){
      if(i == g)
        continue;
      if(p(MAX(i,g)) - p(MIN(i,g)) < diff &&  fullCheck(p(MAX(i,g)) - p(MIN(i,g))) && fullCheck(p(i) + p(g))){
          diff = p(MAX(i,g)) - p(MIN(i,g));
          printf("We have a couple %llu %llu with diff %llu\n", p(i), p(g), diff);
      }
    }
  }

  return 0;
}

float fullCheck(int number){
  float check = (-1 + sqrt(1 + 24 * number))/-6;
  float check2 = (-1 - sqrt(1 + 24 * number))/-6;
  if(check/1.00 == (int)check)
    return check;
  if(check2/1.00 == (int)check2)
    return check2;
  return 0;
}

unsigned long long int p(int n){
  return n * (3 * n - 1 ) / 2;
}
Run Code Online (Sandbox Code Playgroud)

然后我尝试(只是为了好玩)在Python下移植它,看看它会如何反应.我的第一个版本几乎是1:1转换,运行速度非常慢(Python中为120 +秒,C中为<1秒).我做了一些优化,这就是我获得的:

#!/usr/bin/env/python
from cmath import sqrt
import cProfile
from pstats import Stats

def quickCheck(n):
        partial_c = (sqrt(1 + 24 * (n)))/-6 
        c = 1/6 + partial_c
        if int(c.real) == c.real:
                return True
        c = c - 2*partial_c
        if int(c.real) == c.real:
                return True
        return False

def main():        
        maxNumber = 5000
        diff = 1000
        for i in range(1, maxNumber):
                p_i = i * (3 * i - 1 ) / 2
                for g in range(i, maxNumber):
                        if i == g:
                                continue
                        p_g = g * (3 * g - 1 ) / 2
                        if p_i > p_g:
                                ma = p_i
                                mi = p_g
                        else:
                                ma = p_g
                                mi = p_i

                        if ma - mi < diff and quickCheck(ma - mi):
                                if quickCheck(ma + mi):
                                        print ('New couple ', ma, mi)
                                        diff = ma - mi


cProfile.run('main()','script_perf')
perf = Stats('script_perf').sort_stats('time', 'calls').print_stats(10)
Run Code Online (Sandbox Code Playgroud)

这比大约16秒运行更好,但也比C慢近20倍.现在,我知道C比这种计算更好于Python,但我想知道的是,如果有一些我错过的东西(Python - 像一个非常慢的功能或类似的东西,可以使这个功能更快.请注意,我正在使用Python 3.1.1,如果这有所不同

S.L*_*ott 17

由于quickCheck被调用接近25,000,000次,您可能希望使用memoization来缓存答案.

您可以在C和Python中进行memoization.C中的事情也会快得多.

您在1/6quickCheck的每次迭代中进行计算.我不确定这是否会被Python优化,但如果你可以避免重新计算常量值,你会发现事情更快.C编译器为您执行此操作.

做的事情if condition: return True; else: return False很愚蠢 - 而且很费时间.简单地做return condition.

在Python 3.x中,/2必须创建浮点值.你似乎需要整数.你应该使用//2师.就它的功能而言,它将更接近C版本,但我认为它的速度要快得多.

最后,Python通常被解释.解释器总是比C慢得多.

  • 怎么样..?"你将用C编写更快的代码,但在Python中代码更快" (3认同)

tru*_*ppo 10

我在机器上从大约7秒到大约3秒钟:

  • i * (3 * i - 1 ) / 2对于每个值进行预计算,在您的计算中,它计算了两次非常多
  • 缓存调用quickCheck
  • if i == g通过在范围中添加+1来删除
  • 删除,if p_i > p_g因为p_i 总是小于p_g

还将quickCheck函数放在main中,使所有变量都是本地的(查找比全局更快).我相信还有更多的微优化可用.

def main():
        maxNumber = 5000
        diff = 1000

        p = {}
        quickCache = {}

        for i in range(maxNumber):
            p[i] = i * (3 * i - 1 ) / 2

        def quickCheck(n):
            if n in quickCache: return quickCache[n]
            partial_c = (sqrt(1 + 24 * (n)))/-6 
            c = 1/6 + partial_c
            if int(c.real) == c.real:
                    quickCache[n] = True
                    return True
            c = c - 2*partial_c
            if int(c.real) == c.real:
                    quickCache[n] = True
                    return True
            quickCache[n] = False
            return False

        for i in range(1, maxNumber):
                mi = p[i]
                for g in range(i+1, maxNumber):
                        ma = p[g]
                        if ma - mi < diff and quickCheck(ma - mi) and quickCheck(ma + mi):
                                print('New couple ', ma, mi)
                                diff = ma - mi
Run Code Online (Sandbox Code Playgroud)


Ant*_*sma 5

因为函数p()单调递增,所以可以避免比较这些值,因为g> i意味着p(g)> p(i).此外,内循环可以提前破坏,因为p(g) - p(i)> = diff意味着p(g + 1) - p(i)> = diff.

同样为了正确性,我在quickCheck中更改了相等比较以比较与epsilon的差异,因为与浮点的精确比较非常脆弱.

在我的机器上,使用Python 2.6将运行时间减少到7.8ms.使用PyPy和JIT将其减少到0.77ms.

这表明在转向微优化之前,寻找算法优化是值得的.微优化使得识别算法的变化更加难以获得相对微小的收益.

EPS = 0.00000001
def quickCheck(n):
    partial_c = sqrt(1 + 24*n) / -6
    c = 1/6 + partial_c
    if abs(int(c) - c) < EPS:
        return True
    c = 1/6 - partial_c
    if abs(int(c) - c) < EPS:
        return True
    return False

def p(i):
    return i * (3 * i - 1 ) / 2

def main(maxNumber):
    diff = 1000

    for i in range(1, maxNumber):
        for g in range(i+1, maxNumber):
            if p(g) - p(i) >= diff:
                break 
            if quickCheck(p(g) - p(i)) and quickCheck(p(g) + p(i)):
                print('New couple ', p(g), p(i), p(g) - p(i))
                diff = p(g) - p(i)
Run Code Online (Sandbox Code Playgroud)