ali*_*i_m 5 python numpy linear-algebra cython lapack
我正在尝试dgtsv
使用Cython 包装LAPACK函数(三对角方程组的求解器).
我遇到了这个前面的答案,但由于dgtsv
不是LAPACK功能之一,scipy.linalg
我不认为我可以使用这种特殊的方法.相反,我一直试图遵循这个例子.
这是我的lapacke.pxd
文件的内容:
ctypedef int lapack_int
cdef extern from "lapacke.h" nogil:
int LAPACK_ROW_MAJOR
int LAPACK_COL_MAJOR
lapack_int LAPACKE_dgtsv(int matrix_order,
lapack_int n,
lapack_int nrhs,
double * dl,
double * d,
double * du,
double * b,
lapack_int ldb)
Run Code Online (Sandbox Code Playgroud)
...这是我的瘦Cython包装_solvers.pyx
:
#!python
cimport cython
from lapacke cimport *
cpdef TDMA_lapacke(double[::1] DL, double[::1] D, double[::1] DU,
double[:, ::1] B):
cdef:
lapack_int n = D.shape[0]
lapack_int nrhs = B.shape[1]
lapack_int ldb = B.shape[0]
double * dl = &DL[0]
double * d = &D[0]
double * du = &DU[0]
double * b = &B[0, 0]
lapack_int info
info = LAPACKE_dgtsv(LAPACK_ROW_MAJOR, n, nrhs, dl, d, du, b, ldb)
return info
Run Code Online (Sandbox Code Playgroud)
...这是一个Python包装器和测试脚本:
import numpy as np
from scipy import sparse
from cymodules import _solvers
def trisolve_lapacke(dl, d, du, b, inplace=False):
if (dl.shape[0] != du.shape[0] or dl.shape[0] != d.shape[0] - 1
or b.shape != d.shape):
raise ValueError('Invalid diagonal shapes')
if b.ndim == 1:
# b is (LDB, NRHS)
b = b[:, None]
# be sure to force a copy of d and b if we're not solving in place
if not inplace:
d = d.copy()
b = b.copy()
# this may also force copies if arrays are improperly typed/noncontiguous
dl, d, du, b = (np.ascontiguousarray(v, dtype=np.float64)
for v in (dl, d, du, b))
# b will now be modified in place to contain the solution
info = _solvers.TDMA_lapacke(dl, d, du, b)
print info
return b.ravel()
def test_trisolve(n=20000):
dl = np.random.randn(n - 1)
d = np.random.randn(n)
du = np.random.randn(n - 1)
M = sparse.diags((dl, d, du), (-1, 0, 1), format='csc')
x = np.random.randn(n)
b = M.dot(x)
x_hat = trisolve_lapacke(dl, d, du, b)
print "||x - x_hat|| = ", np.linalg.norm(x - x_hat)
Run Code Online (Sandbox Code Playgroud)
不幸的是,test_trisolve
只是在调用段错误_solvers.TDMA_lapacke
.我很确定我setup.py
是正确的 - ldd _solvers.so
显示_solvers.so
在运行时链接到正确的共享库.
我不确定如何从这里开始 - 任何想法?
简要更新:
对于较小的n
I 值,我不会立即得到段错误,但我确实得到了无意义的结果(|| x - x_hat ||应该非常接近0):
In [28]: test_trisolve2.test_trisolve(10)
0
||x - x_hat|| = 6.23202576396
In [29]: test_trisolve2.test_trisolve(10)
-7
||x - x_hat|| = 3.88623414288
In [30]: test_trisolve2.test_trisolve(10)
0
||x - x_hat|| = 2.60190676562
In [31]: test_trisolve2.test_trisolve(10)
0
||x - x_hat|| = 3.86631743386
In [32]: test_trisolve2.test_trisolve(10)
Segmentation fault
Run Code Online (Sandbox Code Playgroud)
通常LAPACKE_dgtsv
返回代码0
(应该表示成功),但偶尔会得到-7
,这意味着参数7(b
)具有非法值.发生的事情是只有第一个值b
实际上被修改了.如果我继续打电话,test_trisolve
即使n
很小,我也最终会遇到一个段错误.
好吧,我最终想通了 - 看来我误解了在这种情况下行和列主要指的是什么。
由于 C 连续数组遵循行主序,我认为我应该指定LAPACK_ROW_MAJOR
为 的第一个参数LAPACKE_dgtsv
。
事实上,如果我改变
info = LAPACKE_dgtsv(LAPACK_ROW_MAJOR, ...)
Run Code Online (Sandbox Code Playgroud)
到
info = LAPACKE_dgtsv(LAPACK_COL_MAJOR, ...)
Run Code Online (Sandbox Code Playgroud)
然后我的函数起作用了:
test_trisolve2.test_trisolve()
0
||x - x_hat|| = 6.67064747632e-12
Run Code Online (Sandbox Code Playgroud)
这对我来说似乎非常违反直觉 - 谁能解释为什么会这样?
归档时间: |
|
查看次数: |
483 次 |
最近记录: |