我希望下面的代码输出一个包含三行的数据框,每行代表计算每组的平均值后mpg的累积平均值cyl:
library(dplyr)
mtcars %>%
arrange(cyl) %>%
group_by(cyl) %>%
summarise(running.mean.mpg = cummean(mpg))
Run Code Online (Sandbox Code Playgroud)
这就是我期望发生的事情:
mean_cyl_4 <- mtcars %>%
filter(cyl == 4) %>%
summarise(mean(mpg))
mean_cyl_4_6 <- mtcars %>%
filter(cyl == 4 | cyl == 6) %>%
summarise(mean(mpg))
mean_cyl_4_6_8 <- mtcars %>%
filter(cyl == 4 | cyl == 6 | cyl == 8) %>%
summarise(mean(mpg))
data.frame(cyl = c(4,6,8), running.mean.mpg = c(mean_cyl_4[1,1], mean_cyl_4_6[1,1], mean_cyl_4_6_8[1,1]))
cyl running.mean.mpg
1 4 26.66364
2 6 23.97222
3 8 20.09062
Run Code Online (Sandbox Code Playgroud)
为什么dplyr似乎忽略了group_by(cyl)?
require("dplyr")
mtcars %>%
arrange(cyl) %>%
group_by(cyl) %>%
mutate(running.mean.mpg = cummean(mpg)) %>%
select(cyl, running.mean.mpg)
# Source: local data frame [32 x 2]
# Groups: cyl
#
# # cyl running.mean.mpg
# # 1 4 22.80000
# # 2 4 23.60000
# # 3 4 23.33333
# # 4 4 25.60000
# # 5 4 26.56000
# # 6 4 27.78333
# # 7 4 26.88571
# # 8 4 26.93750
Run Code Online (Sandbox Code Playgroud)
为了实验,这也适用data.table.我的意思是,你必须加载dplyr也cummean()可用.
require("data.table")
DT <- as.data.table(mtcars)
DT[,j=list(
running.mean.mpg = cummean(mpg)
), by="cyl"]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2313 次 |
| 最近记录: |