将 plm 拟合值合并到数据集

Lun*_*una 3 r plm

我正在使用 plm 处理固定效应回归模型。

该模型如下所示:

FE.model <-plm(fml, data = data.reg2,
           index=c('Site.ID','date.hour'), # cross section ID and time series ID
           model='within', #coefficients are fixed
           effect='individual')
summary(FE.model)
Run Code Online (Sandbox Code Playgroud)

“fml”是我之前定义的公式。我有很多自变量,所以这使它更有效率。

我想要做的是获取我的拟合值(我的 yhats)并将它们加入我的基础数据集;数据.reg2

我能够使用以下代码获得拟合值:

 Fe.model.fitted <- FE.model$model[[1]] - FE.model$residuals
Run Code Online (Sandbox Code Playgroud)

但是,这只给了我一个拟合值的一列向量 - 我无法将它加入我的基本数据集。

或者,我尝试过这样的事情:

 Fe.model.fitted <- cbind(data.reg2, resid=resid(FE.model), fitted=fitted(FE.model))
Run Code Online (Sandbox Code Playgroud)

但是,我收到此错误:

 Error in as.data.frame.default(x[[i]], optional = TRUE) : cannot coerce class ""pseries"" to a data.frame
Run Code Online (Sandbox Code Playgroud)

还有其他方法可以在我的基础数据集中获取我的拟合值吗?或者有人可以解释我遇到的错误,也许是一种解决方法?

我应该注意,我不想根据我的 beta 手动计算 yhat。对于该选项,我有太多的自变量,并且我定义的公式 (fml) 可能会更改,因此该选项将无效。

非常感谢!!

Pet*_*ter 6

plm拟合值合并回原始数据集需要一些中间步骤——plm删除任何缺少数据的行,据我所知,plm对象不包含索引信息。数据的顺序没有保留——看看plm作者之一乔瓦尼·米洛 (Giovanni Millo ) 在此线程中的评论:

“...输入顺序并不总是保留:观察总是在内部按(个人,时间)重新排序,以便您得到的输出相应地排序......”

简而言之的步骤:

  1. 从估计的plm对象中获取拟合值。它是单个向量,但条目已命名。名称对应于索引中的位置。
  2. 使用该index()函数获取索引。它可以返回单个和时间索引。请注意,索引可能包含比拟合值更多的行,以防因缺失数据而删除行。(也可以直接从原始数据生成索引,但我没有看到在plm返回的内容中保留数据的原始顺序的承诺。)
  3. 合并到原始数据中,从索引中查找 id 和 time 值。

下面提供了示例代码。有点长,但我试图发表评论。代码没有优化,我的目的是明确列出步骤。另外,我使用data.table的是s 而不是data.frames。

library(data.table); library(plm)

### Generate dummy data. This way we know the "true" coefficients
set.seed(100)
n <- 500 # Run with more data if you want to get closer to the "true" coefficients
DT <- data.table(CJ(id = c("a","b","c","d","e"), time = c(1:(n / 5))))
DT[, x1 := rnorm(n)]
DT[, x2 := rnorm(n)]
DT[, y  := x1 + 2 * x2 + rnorm(n) / 10]

setkey(DT, id, time)
# # Make it an unbalanced panel & put in some NAs
DT <- DT[!(id == "a" & time == 4)]
DT[.("a", 3), x2 := as.numeric(NA)]
DT[.("d", 2), x2 := as.numeric(NA)]

str(DT)

### Run the model -- both individual and time effects; "within" model
summary(PLM <- plm(data = DT, id = c("id", "time"), formula = y ~ x1 + x2, model = "within", effect = "twoways", na.action = "na.omit"))

### Merge the fitted values back into the data.table DT
# Note that PLM$model$y is shorter than the data, i.e. the row(s) with NA have been dropped
cat("\nRows omitted (due to NA): ", nrow(DT) - length(PLM$model$y))

# Since the objects returned by plm() do not contain the index, need to generate it from the data
# The object returned by plm(), i.e. PLM$model$y, has names that point to the place in the index
# Note: The index can also be done as INDEX <- DT[, j = .(id, time)], but use the longer way with index() in case plm does not preserve the order
INDEX <- data.table(index(x = pdata.frame(x = DT, index = c("id", "time")), which = NULL)) # which = NULL extracts both the individual and time indexes
INDEX[, id := as.character(id)]
INDEX[, time := as.integer(time)] # it is returned as a factor, convert back to integer to match the variable type in DT

# Generate the fitted values as the difference between the y values and the residuals
if (all(names(PLM$residuals) == names(PLM$model$y))) { # this should not be needed, but just in case...
    FIT <- data.table(
        index   = as.integer(names(PLM$model$y)), # this index corresponds to the position in the INDEX, from where we get the "id" and "time" below
        fit.plm = as.numeric(PLM$model$y) - as.numeric(PLM$residuals)
    )
}

FIT[, id   := INDEX[index]$id]
FIT[, time := INDEX[index]$time]
# Now FIT has both the id and time variables, can match it back into the original dataset (i.e. we have the missing data accounted for)
DT <- merge(x = DT, y = FIT[, j = .(id, time, fit.plm)], by = c("id", "time"), all = TRUE) # Need all = TRUE, or some data from DT will be dropped!
Run Code Online (Sandbox Code Playgroud)