np.percentile(ndarr, axis=0)对包含NaN值的数据有一个相当快速的方法吗?
因为np.median,相应的bottleneck.nanmedian(https://pypi.python.org/pypi/Bottleneck)非常好.
我提出的最好的百分位数是不完整的,目前是不正确的,是:
from bottleneck import nanrankdata, nanmax, nanargmin
def nanpercentile(x, q, axis):
ranks = nanrankdata(x, axis=axis)
peak = nanmax(ranks, axis=axis)
pct = ranks/peak / 100. # to make a percentile
wh = nanargmin(abs(pct-q),axis=axis)
return x[wh]
Run Code Online (Sandbox Code Playgroud)
这不起作用; 真正需要的是采取第n个元素的一些方法axis,但我没有找到这样做的numpy切片技巧.
"合理快速"意味着比循环索引更好,例如:
q = 40
x = np.array([[[1,2,3],[6,np.nan,4]],[[0.5,2,1],[9,3,np.nan]]])
out = np.empty(x.shape[:-1])
for i in range(x.shape[0]):
for j in range(x.shape[1]):
d = x[i,j,:]
out[i,j] = np.percentile(d[np.isfinite(d)], q)
print out
#array([[ 1.8, 4.8],
# [ 0.9, 5.4]])
Run Code Online (Sandbox Code Playgroud)
哪个有效,但可能非常慢.
np.ma似乎没有按预期工作; 它将nan价值看作是inf:
xm = np.ma.masked_where(np.isnan(x),x)
print np.percentile(xm,40,axis=2)
# array([[ 1.8, 5.6],
# [ 0.9, 7.8]])
Run Code Online (Sandbox Code Playgroud)
np.nanpercentile 包含在numpy 1.9.0中
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanpercentile.html
| 归档时间: |
|
| 查看次数: |
3715 次 |
| 最近记录: |