在OpenCV中使用StereoBM的差异视差图

Dan*_*Lee 14 python opencv computer-vision stereo-3d

我已经把一个立体声凸轮装置放在一起,我很难用它来制作一个好的视差图.这是一个两个校正图像和我用它们产生的视差图的例子:

使用视差图整理图像

如你所见,结果非常糟糕.更改StereoBM的设置并没有太大变化.

设置

  • 两个相机都是相同的型号,并通过USB连接到我的电脑.
  • 它们被固定在刚性木板上,因此它们不会移动.我尽可能地将它们对齐,但当然它并不完美.它们无法移动,因此它们在校准期间和之后的位置是相同的.
  • 我使用OpenCV校准了立体声对,并使用OpenCV的StereoBM类来产生视差图.
  • 它可能不那么相关,但我用Python编码.

我能想象的问题

我是第一次这样做,所以我远不是专家,但我猜测问题出在校准或立体声校正中,而不是视差图的计算.我已经尝试了所有设置的排列StereoBM,虽然我得到了不同的结果,但它们都像上面显示的视差图:黑色和白色的补丁.

正如我所理解的那样,立体校正应该对齐每个图像上的所有点,以便它们通过直线(在我的情况下是水平线)连接,这一事实进一步支持了这一想法.如果我检查彼此相邻的两个经过校正的图片,那么事实并非如此,事实并非如此.右侧图片上的对应点比左侧高得多.不过,我不确定校准或整流是否是问题.

代码

实际代码包含在对象中 - 如果您有兴趣全部查看它,它可以在GitHub上获得.这是一个实际运行的简化示例(当然在我使用超过2张图片校准的实际代码中):

import cv2
import numpy as np

## Load test images
# TEST_IMAGES is a list of paths to test images
input_l, input_r = [cv2.imread(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
                    for image in TEST_IMAGES]
image_size = input_l.shape[:2]

## Retrieve chessboard corners
# CHESSBOARD_ROWS and CHESSBOARD_COLUMNS are the number of inside rows and
# columns in the chessboard used for calibration
pattern_size = CHESSBOARD_ROWS, CHESSBOARD_COLUMNS
object_points = np.zeros((np.prod(pattern_size), 3), np.float32)
object_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
# SQUARE_SIZE is the size of the chessboard squares in cm
object_points *= SQUARE_SIZE
image_points = {}
ret, corners_l = cv2.findChessboardCorners(input_l, pattern_size, True)
cv2.cornerSubPix(input_l, corners_l,
                 (11, 11), (-1, -1),
                 (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                  30, 0.01))
image_points["left"] = corners_l.reshape(-1, 2)
ret, corners_r = cv2.findChessboardCorners(input_r, pattern_size, True)
cv2.cornerSubPix(input_r, corners_r,
                 (11, 11), (-1, -1),
                 (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                  30, 0.01))
image_points["right"] = corners_r.reshape(-1, 2)

## Calibrate cameras
(cam_mats, dist_coefs, rect_trans, proj_mats, valid_boxes,
 undistortion_maps, rectification_maps) = {}, {}, {}, {}, {}, {}, {}
criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
            100, 1e-5)
flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST +
         cv2.CALIB_SAME_FOCAL_LENGTH)
(ret, cam_mats["left"], dist_coefs["left"], cam_mats["right"],
 dist_coefs["right"], rot_mat, trans_vec, e_mat,
 f_mat) = cv2.stereoCalibrate(object_points,
                              image_points["left"], image_points["right"],
                              image_size, criteria=criteria, flags=flags)
(rect_trans["left"], rect_trans["right"],
 proj_mats["left"], proj_mats["right"],
 disp_to_depth_mat, valid_boxes["left"],
 valid_boxes["right"]) = cv2.stereoRectify(cam_mats["left"],
                                           dist_coefs["left"],
                                           cam_mats["right"],
                                           dist_coefs["right"],
                                           image_size,
                                           rot_mat, trans_vec, flags=0)
for side in ("left", "right"):
    (undistortion_maps[side],
     rectification_maps[side]) = cv2.initUndistortRectifyMap(cam_mats[side],
                                                           dist_coefs[side],
                                                           rect_trans[side],
                                                           proj_mats[side],
                                                           image_size,
                                                           cv2.CV_32FC1)

## Produce disparity map
rectified_l = cv2.remap(input_l, undistortion_maps["left"],
                        rectification_maps["left"],
                        cv2.INTER_NEAREST)
rectified_r = cv2.remap(input_r, undistortion_maps["right"],
                        rectification_maps["right"],
                        cv2.INTER_NEAREST)
cv2.imshow("left", rectified_l)
cv2.imshow("right", rectified_r)
block_matcher = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, 0, 5)
disp = block_matcher.compute(rectified_l, rectified_r, disptype=cv2.CV_32F)
cv2.imshow("disparity", disp)
Run Code Online (Sandbox Code Playgroud)

这里出了什么问题?

Dan*_*Lee 16

原来,问题是可视化而不是数据本身.某处,我读了cv2.reprojectImageTo3D所需的视差图作为浮点值,这就是为什么我要求cv2.CV_32Fblock_matcher.compute.

更仔细地阅读OpenCV文档让我觉得我错误地认为这是错误的,并且为了速度,我实际上更喜欢使用整数而不是浮点数,但是文档的内容cv2.imshow并不清楚它是如何处理的16位有符号整数(与16位无符号相比),因此对于可视化,我将值保留为浮点数.

所述的文件cv2.imshow显示,32位浮点值被假定为0和1之间,以使它们乘以255 255是在哪个像素被显示为白色的饱和点.在我的例子中,这个假设产生了一个二元映射.我手动将其缩放到0-255的范围,然后将其除以255,以便取消OpenCV也做同样的事实.我知道,这是一个可怕的操作,但我只是为了调整我的StereoBM离线,所以性能是不加批判的.解决方案如下所示:

# Other code as above
disp = block_matcher.compute(rectified_l, rectified_r, disptype=cv2.CV_32F)
norm_coeff = 255 / disp.max()
cv2.imshow("disparity", disp * norm_coeff / 255)
Run Code Online (Sandbox Code Playgroud)

然后视差图看起来没问题.