uda*_*day 6 pytables python-3.x pandas
我有一个熊猫数据帧myDF的几个字符串列(其dtype为object)和许多数字列.我尝试了以下方法:
d=pandas.HDFStore("C:\\PF\\Temp.h5")
d['test']=myDF
Run Code Online (Sandbox Code Playgroud)
我得到了这个结果:
C:\PF\WinPython-64bit-3.3.3.3\python-3.3.3.amd64\lib\site-packages\pandas\io\pytables.py:2446: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block2_values]
[items->[0, 1, 3, 4, 5, 6, 9, 10, 292, 411, 412, 477, 478, 479, 495, 572, 581, 590, 599, 608, 617, 626, 635]]
warnings.warn(ws, PerformanceWarning)
Run Code Online (Sandbox Code Playgroud)
看起来每个列都是一个字符串的问题.例如,如果我尝试
myDF[0].dtype
Run Code Online (Sandbox Code Playgroud)
我明白了
Out[38]: dtype('O')
Run Code Online (Sandbox Code Playgroud)
如何解决问题,即更改dtypefor string列,以便HDFStore可以将其视为字符串列?
*编辑*
更多信息请求
>>> pandas.__version__
Out[49]: '0.13.1'
>>> tables.__version__
Out[53]: '3.1.0'
Run Code Online (Sandbox Code Playgroud)
构建pandas数据框如下:
pandas.read_csv(fName,sep="|",header=None,low_memory=False)
Run Code Online (Sandbox Code Playgroud)
当我尝试
myDF.info()
Run Code Online (Sandbox Code Playgroud)
我明白了
Int64Index: 153895 entries, 0 to 153894
Data columns (total 644 columns):
0 object
1 object
2 int64
3 object
4 object
5 object
6 object
7 int64
8 float64
9 object
10 object
11 float64
12 float64
13 float64
14 float64
...
...
642 float64
643 float64
dtypes: float64(619), int64(2), object(23)
Run Code Online (Sandbox Code Playgroud)
所有字符串列均已读为 object
Jef*_*eff 16
仅当列中包含混合类型时才会发生此警告.不只是字符串,而是字符串AND号.
In [2]: DataFrame({ 'A' : [1.0,'foo'] }).to_hdf('test.h5','df',mode='w')
pandas/io/pytables.py:2439: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block0_values] [items->['A']]
warnings.warn(ws, PerformanceWarning)
In [3]: df = DataFrame({ 'A' : [1.0,'foo'] })
In [4]: df
Out[4]:
A
0 1
1 foo
[2 rows x 1 columns]
In [5]: df.dtypes
Out[5]:
A object
dtype: object
In [6]: df['A']
Out[6]:
0 1
1 foo
Name: A, dtype: object
In [7]: df['A'].values
Out[7]: array([1.0, 'foo'], dtype=object)
Run Code Online (Sandbox Code Playgroud)
因此,您需要确保不要在列中混合使用
如果您有需要转换的列,则可以执行以下操作:
In [9]: columns = ['A']
In [10]: df.loc[:,columns] = df[columns].applymap(str)
In [11]: df
Out[11]:
A
0 1.0
1 foo
[2 rows x 1 columns]
In [12]: df['A'].values
Out[12]: array(['1.0', 'foo'], dtype=object)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5587 次 |
| 最近记录: |