Jin*_*ing 7 python numpy matplotlib scipy sparse-matrix
给定一个稀疏的二进制矩阵A(csr,coo,等等)我想制作一个图,这样我可以看到图中的位置(i,j)= white,如果A(i,j)= 1,和(i, j)= A,如果A(i,j)= 0;
对于密集的numpy数组,matshow将完成这项工作.但是,我的稀疏矩阵(例如100000 x 1000000)的维度很大,可以转换为密集阵列.我想知道如何在稀疏矩阵中绘制模式.
谢谢
Sau*_*tro 18
您可以使用得到一个不错的结果coo_matrix,plot()以及一些调整:
import matplotlib.pyplot as plt
from scipy.sparse import coo_matrix
def plot_coo_matrix(m):
if not isinstance(m, coo_matrix):
m = coo_matrix(m)
fig = plt.figure()
ax = fig.add_subplot(111, axisbg='black')
ax.plot(m.col, m.row, 's', color='white', ms=1)
ax.set_xlim(0, m.shape[1])
ax.set_ylim(0, m.shape[0])
ax.set_aspect('equal')
for spine in ax.spines.values():
spine.set_visible(False)
ax.invert_yaxis()
ax.set_aspect('equal')
ax.set_xticks([])
ax.set_yticks([])
return ax
Run Code Online (Sandbox Code Playgroud)
请注意,y轴被反转以将第一行放在图的顶部.一个例子:
import numpy as np
from scipy.sparse import coo_matrix
shape = (100000, 100000)
rows = np.int_(np.round_(shape[0]*np.random.random(1000)))
cols = np.int_(np.round_(shape[1]*np.random.random(1000)))
vals = np.ones_like(rows)
m = coo_matrix((vals, (rows, cols)), shape=shape)
ax = plot_coo_matrix(m)
ax.figure.show()
Run Code Online (Sandbox Code Playgroud)
