在scikit-learn中有没有内置的做暴力特征选择的方法?即彻底评估输入特征的所有可能组合,然后找到最佳子集.我熟悉"递归特征消除"类,但我特别感兴趣的是一个接一个地评估输入特征的所有可能组合.
小智 7
结合 Fred Foo 的回答以及 nopper、ihadanny 和 jimijazz 的评论,以下代码获得与实验 1 中第一个示例的 R 函数 regsubsets() (leaps 库的一部分)相同的结果(6.5.1 最佳子集) Selection)在《R 中的统计学习及其应用简介》一书中。
from itertools import combinations
from sklearn.cross_validation import cross_val_score
def best_subset(estimator, X, y, max_size=8, cv=5):
'''Calculates the best model of up to max_size features of X.
estimator must have a fit and score functions.
X must be a DataFrame.'''
n_features = X.shape[1]
subsets = (combinations(range(n_features), k + 1)
for k in range(min(n_features, max_size)))
best_size_subset = []
for subsets_k in subsets: # for each list of subsets of the same size
best_score = -np.inf
best_subset = None
for subset in subsets_k: # for each subset
estimator.fit(X.iloc[:, list(subset)], y)
# get the subset with the best score among subsets of the same size
score = estimator.score(X.iloc[:, list(subset)], y)
if score > best_score:
best_score, best_subset = score, subset
# to compare subsets of different sizes we must use CV
# first store the best subset of each size
best_size_subset.append(best_subset)
# compare best subsets of each size
best_score = -np.inf
best_subset = None
list_scores = []
for subset in best_size_subset:
score = cross_val_score(estimator, X.iloc[:, list(subset)], y, cv=cv).mean()
list_scores.append(score)
if score > best_score:
best_score, best_subset = score, subset
return best_subset, best_score, best_size_subset, list_scores
Run Code Online (Sandbox Code Playgroud)
不,没有实现最佳子集选择.最简单的方法是自己编写.这应该让你开始:
from itertools import chain, combinations
from sklearn.cross_validation import cross_val_score
def best_subset_cv(estimator, X, y, cv=3):
n_features = X.shape[1]
subsets = chain.from_iterable(combinations(xrange(k), k + 1)
for k in xrange(n_features))
best_score = -np.inf
best_subset = None
for subset in subsets:
score = cross_val_score(estimator, X[:, subset], y, cv=cv).mean()
if score > best_score:
best_score, best_subset = score, subset
return best_subset, best_score
Run Code Online (Sandbox Code Playgroud)
这执行ķ循环内倍交叉验证,所以它适合ķ 2 ᵖ与给予数据时估计p特征.
归档时间: |
|
查看次数: |
3221 次 |
最近记录: |