him*_*hyr 10 r machine-learning decision-tree kaggle
我收到以下错误
c50代码名为exit,值为1
我在Kaggle提供的巨大数据上这样做
# Importing datasets
train <- read.csv("train.csv", sep=",")
# this is the structure
str(train)
Run Code Online (Sandbox Code Playgroud)
输出: -
'data.frame': 891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
$ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 ...
$ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
$ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
$ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
$ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
$ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345 133 ...
$ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
$ Cabin : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 1 1 ...
$ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
Run Code Online (Sandbox Code Playgroud)
然后我尝试使用C5.0 dtree
# Trying with C5.0 decision tree
library(C50)
#C5.0 models require a factor outcome otherwise error
train$Survived <- factor(train$Survived)
new_model <- C5.0(train[-2],train$Survived)
Run Code Online (Sandbox Code Playgroud)
所以运行上面的行给了我这个错误
c50 code called exit with value 1
Run Code Online (Sandbox Code Playgroud)
我无法弄清楚出了什么问题?我在不同的数据集上使用类似的代码,它工作正常.关于如何调试我的代码的任何想法?
-谢谢
Mar*_*rco 13
对于任何感兴趣的人,可以在这里找到数据:http://www.kaggle.com/c/titanic-gettingStarted/data.我想你需要注册才能下载它.
关于你的问题,首先我认为你打算写
new_model <- C5.0(train[,-2],train$Survived)
Run Code Online (Sandbox Code Playgroud)
接下来,请注意Cabin和Embarked列的结构.这两个因子具有空字符作为级别名称(选中levels(train$Embarked)).这是C50跌倒的地方.如果你修改你的数据
levels(train$Cabin)[1] = "missing"
levels(train$Embarked)[1] = "missing"
Run Code Online (Sandbox Code Playgroud)
您的算法现在将运行而不会出现错误.
这是最终有效的方法:-
看完这篇文章后有了这个想法
library(C50)
test$Survived <- NA
combinedData <- rbind(train,test)
combinedData$Survived <- factor(combinedData$Survived)
# fixing empty character level names
levels(combinedData$Cabin)[1] = "missing"
levels(combinedData$Embarked)[1] = "missing"
new_train <- combinedData[1:891,]
new_test <- combinedData[892:1309,]
new_model <- C5.0(new_train[,-2],new_train$Survived)
new_model_predict <- predict(new_model,new_test)
submitC50 <- data.frame(PassengerId=new_test$PassengerId, Survived=new_model_predict)
write.csv(submitC50, file="c50dtree.csv", row.names=FALSE)
Run Code Online (Sandbox Code Playgroud)
这背后的直觉是,通过这种方式,训练和测试数据集将具有一致的因子水平。
以防万一.您可以查看错误
summary(new_model)
Run Code Online (Sandbox Code Playgroud)
当变量名称中有特殊字符时,也会发生此错误.例如,如果变量名称中有"я"(来自俄语字母)字符,则会出现此错误.