Ame*_*ina 15 python matplotlib pandas seaborn
假设我Dataframe使用以下内容创建完全随机:
from pandas.util import testing
from random import randrange
def random_date(start, end):
delta = end - start
int_delta = (delta.days * 24 * 60 * 60) + delta.seconds
random_second = randrange(int_delta)
return start + timedelta(seconds=random_second)
def rand_dataframe():
df = testing.makeDataFrame()
df['date'] = [random_date(datetime.date(2014,3,18),datetime.date(2014,4,1)) for x in xrange(df.shape[0])]
df.sort(columns=['date'], inplace=True)
return df
df = rand_dataframe()
Run Code Online (Sandbox Code Playgroud)
这导致数据框显示在本文的底部.我想我的阴谋列A,B,C和D使用时间序列可视化功能中seaborn,使我得到这些方针的东西:

我该如何处理这个问题?根据我在这款笔记本上看到的内容,电话应该是:
sns.tsplot(df, time="time", unit="unit", condition="condition", value="value")
Run Code Online (Sandbox Code Playgroud)
但这似乎需要数据框被以不同的方式来表示,用某种方式编码列time,unit,condition并且value,这不是我的情况.如何将我的数据帧(如下所示)转换为此格式?
这是我的数据帧:
date A B C D
2014-03-18 1.223777 0.356887 1.201624 1.968612
2014-03-18 0.160730 1.888415 0.306334 0.203939
2014-03-18 -0.203101 -0.161298 2.426540 0.056791
2014-03-18 -1.350102 0.990093 0.495406 0.036215
2014-03-18 -1.862960 2.673009 -0.545336 -0.925385
2014-03-19 0.238281 0.468102 -0.150869 0.955069
2014-03-20 1.575317 0.811892 0.198165 1.117805
2014-03-20 0.822698 -0.398840 -1.277511 0.811691
2014-03-20 2.143201 -0.827853 -0.989221 1.088297
2014-03-20 0.299331 1.144311 -0.387854 0.209612
2014-03-20 1.284111 -0.470287 -0.172949 -0.792020
2014-03-22 1.031994 1.059394 0.037627 0.101246
2014-03-22 0.889149 0.724618 0.459405 1.023127
2014-03-23 -1.136320 -0.396265 -1.833737 1.478656
2014-03-23 -0.740400 -0.644395 -1.221330 0.321805
2014-03-23 -0.443021 -0.172013 0.020392 -2.368532
2014-03-23 1.063545 0.039607 1.673722 1.707222
2014-03-24 0.865192 -0.036810 -1.162648 0.947431
2014-03-24 -1.671451 0.979238 -0.701093 -1.204192
2014-03-26 -1.903534 -1.550349 0.267547 -0.585541
2014-03-27 2.515671 -0.271228 -1.993744 -0.671797
2014-03-27 1.728133 -0.423410 -0.620908 1.430503
2014-03-28 -1.446037 -0.229452 -0.996486 0.120554
2014-03-28 -0.664443 -0.665207 0.512771 0.066071
2014-03-29 -1.093379 -0.936449 -0.930999 0.389743
2014-03-29 1.205712 -0.356070 -0.595944 0.702238
2014-03-29 -1.069506 0.358093 1.217409 -2.286798
2014-03-29 2.441311 1.391739 -0.838139 0.226026
2014-03-31 1.471447 -0.987615 0.201999 1.228070
2014-03-31 -0.050524 0.539846 0.133359 -0.833252
Run Code Online (Sandbox Code Playgroud)
最后,我要找的是图的叠加(每列一个),其中每个看起来如下(注意CI的不同值得到不同的alpha值):

mwa*_*kom 35
我认为不会tsplot对您拥有的数据起作用.它对输入数据的假设是你在每个时间点对相同的单位进行了采样(尽管某些单位可能缺少时间点).
例如,假设您每天测量同一个人的血压一个月,然后您想按条件绘制平均血压(可能"条件"变量是他们所饮食的饮食).tsplot可以做到这一点,通话看起来像sns.tsplot(df, time="day", unit="person", condition="diet", value="blood_pressure")
这种情况不同于在不同饮食中拥有大量人群,并且每天随机抽取每组中的一些人并测量他们的血压.从您给出的示例来看,您的数据似乎就像这样.
然而,想出matplotlib和pandas的组合并不难,我会根据自己的想法做到:
# Read in the data from the stackoverflow question
df = pd.read_clipboard().iloc[1:]
# Convert it to "long-form" or "tidy" representation
df = pd.melt(df, id_vars=["date"], var_name="condition")
# Plot the average value by condition and date
ax = df.groupby(["condition", "date"]).mean().unstack("condition").plot()
# Get a reference to the x-points corresponding to the dates and the the colors
x = np.arange(len(df.date.unique()))
palette = sns.color_palette()
# Calculate the 25th and 75th percentiles of the data
# and plot a translucent band between them
for cond, cond_df in df.groupby("condition"):
low = cond_df.groupby("date").value.apply(np.percentile, 25)
high = cond_df.groupby("date").value.apply(np.percentile, 75)
ax.fill_between(x, low, high, alpha=.2, color=palette.pop(0))
Run Code Online (Sandbox Code Playgroud)
此代码生成:
