1 python stochastic genetic-algorithm evolutionary-algorithm
我有一个遗传算法,目前正在使用轮盘赌选择来生成新的种群,我想将其更改为随机通用采样。
我对这里的工作方式有一个粗略的概述:
pointerDistance = sumFitness/popSize
start = rand.uniform(0, pointerDistance)
for i in xrange(popSize):
pointers.append(start + i*pointerDistance)
cumulativeFit = 0
newIndiv = 0
for p in pointers:
while cumulativeFit <= p:
cumulativeFit += pop[newIndiv].fitness
newPop[newIndiv] = copy.deepcopy(pop[newIndiv])
newIndiv += 1
Run Code Online (Sandbox Code Playgroud)
但我正在努力解决如何准确地实现随机通用采样。有谁知道一些伪代码或示例的好来源?
用一个例子简要描述什么是随机通用采样(但我不确定它是否有意义?):
def makeWheel(population):
wheel = []
total = sum(fitness(p) for p in population)
top = 0
for p in population:
f = fitness(p)/total
wheel.append((top, top+f, p))
top += f
return wheel
def binSearch(wheel, num):
mid = len(wheel)//2
low, high, answer = wheel[mid]
if low<=num<=high:
return answer
elif low > num:
return binSearch(wheel[mid+1:], num)
else:
return binSearch(wheel[:mid], num)
def select(wheel, N):
stepSize = 1.0/N
answer = []
r = random.random()
answer.append(binSearch(wheel, r))
while len(answer) < N:
r += stepSize
if r>1:
r %= 1
answer.append(binSearch(wheel, r))
return answer
Run Code Online (Sandbox Code Playgroud)