"某处"是"在标准库中或某些包中,这些包很小并且通用性足以使其成为相对无害的依赖".
import qualified Data.Map as M
import Data.Monoid
import Control.Applicative
newtype MMap k v = MMap {unMMap :: M.Map k v}
newtype MApplictive f a = MApplicative {unMApplicative :: f a}
-- M.unionWith f M.empty m = M.unionWith f m M.empty = m
-- f a (f b c) = f (f a b) c =>
-- M.unionWith f m1 (M.unionWith f m2 m3) =
-- M.unionWith f (M.unionWith f m1 m2) m3
instance (Ord k, Monoid v) => Monoid (MMap k v) where
mempty = MMap $ M.empty
mappend m1 m2 = MMap $ M.unionWith mappend (unMMap m1) (unMMap m2)
instance (Applicative f, Monoid a) => Monoid (MApplicative f a) where
mempty = MApplicative $ pure mempty
mappend f1 f2 = MApplicative $ liftA2 mappend (unMApplicative f1) (unMApplicative f2)
Run Code Online (Sandbox Code Playgroud)
(这些实例应该满足幺半群定律 - 虽然没有为申请人证明这一点)
我问,因为我对这两者都有一些用处,我不喜欢重新定义已经存在的东西.
像这样的东西吗?
class Functor f => Monoidal f where
fempty :: Monoid m => f m
fempty = fconcat []
fappend :: Monoid m => f m -> f m -> f m
fappend l r = fconcat [l, r]
fconcat :: (Foldable c, Monoid m) => c (f m) -> f m
fconcat = unMWrap $ foldMap MWrap
{-# MINIMAL fempty, fappend | fconcat #-}
-- Could just be Pointed instead of Applicative, but that's not in base
applicativeFEmpty :: (Applicative f, Monoid m) => f m
applicativeFEmpty = pure mempty
applicativeFAppend :: (Applicative f, Monoid m) => f m -> f m -> f m
applicativeFAppend = liftA2 mappend
applicativeFConcat :: (Applicative f, Monoid m, Foldable c) => c (f m) -> f m
applicativeFConcat = fmap mconcat . sequenceA . foldMap (:[])
newtype MonoidWrap f a = MWrap { unMWrap :: f a }
instance Monoidal f, Monoid m => Monoid (MonoidWrap f m) where
mempty = MWrap $ fempty . unMWrap
mappend l r = MWrap $ fappend (unMWap l) (unMWrap r)
mconcat = MWrap $ fconcat . map unMWrap
Run Code Online (Sandbox Code Playgroud)
另外,基础中所有合适数据类型的 Monoidal 实例?它不会涵盖 Data.Map.Map,这实际上是我对此模式最常见的用法,但可以简单地添加它。
不太确定 mconcat 和 fconcat 之间的递归。可能是个问题。