在Numpy中连接空数组

max*_*v15 40 python arrays matlab numpy

在Matlab中我这样做:

>> E = [];
>> A = [1 2 3 4 5; 10 20 30 40 50];
>> E = [E ; A]

E =

     1     2     3     4     5
    10    20    30    40    50
Run Code Online (Sandbox Code Playgroud)

现在我想在Numpy做同样的事情,但我有问题,看看这个:

>>> E = array([],dtype=int)
>>> E
array([], dtype=int64)
>>> A = array([[1,2,3,4,5],[10,20,30,40,50]])

>>> E = vstack((E,A))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/core/shape_base.py", line 226, in vstack
    return _nx.concatenate(map(atleast_2d,tup),0)
ValueError: array dimensions must agree except for d_0
Run Code Online (Sandbox Code Playgroud)

当我这样做时,我有类似的情况:

>>> E = concatenate((E,A),axis=0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: arrays must have same number of dimensions
Run Code Online (Sandbox Code Playgroud)

要么:

>>> E = append([E],[A],axis=0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/lib/function_base.py", line 3577, in append
    return concatenate((arr, values), axis=axis)
ValueError: arrays must have same number of dimensions
Run Code Online (Sandbox Code Playgroud)

beh*_*uri 70

如果您事先知道列数:

>>> xs = np.array([[1,2,3,4,5],[10,20,30,40,50]])
>>> ys = np.array([], dtype=np.int64).reshape(0,5)
>>> ys
array([], shape=(0, 5), dtype=int64)
>>> np.vstack([ys, xs])
array([[  1.,   2.,   3.,   4.,   5.],
       [ 10.,  20.,  30.,  40.,  50.]])
Run Code Online (Sandbox Code Playgroud)

如果不:

>>> ys = np.array([])
>>> ys = np.vstack([ys, xs]) if ys.size else xs
array([[ 1,  2,  3,  4,  5],
       [10, 20, 30, 40, 50]])
Run Code Online (Sandbox Code Playgroud)

  • @NirvedhMeshram第二条语句说,如果ys.size是一个值,任何非零或False的值,则执行该语句。 (2认同)