Mit*_*rax 55 language-agnostic algorithm math maple factorization
我写了一个试图找到Amicable Pairs的程序.这需要找到数字的适当除数的总和.
这是我目前的sumOfDivisors()
方法:
int sumOfDivisors(int n)
{
int sum = 1;
int bound = (int) sqrt(n);
for(int i = 2; i <= 1 + bound; i++)
{
if (n % i == 0)
sum = sum + i + n / i;
}
return sum;
}
Run Code Online (Sandbox Code Playgroud)
所以我需要做很多因子分解,这开始成为我应用程序的真正瓶颈.我在MAPLE中输入了一个巨大的数字,它将它快速地考虑在内.
什么是更快的分解算法?
Sam*_*ell 88
该方法可行,但速度很慢."你的数字有多大?" 确定使用方法:
Shr*_*saR 21
标题中的问题(和最后一行)似乎与问题的实际主体没什么关系.如果你试图找到友好的对,或计算许多数的除数之和,那么单独分解每个数字(即使用最快的算法)绝对是一种低效的方法.
该加总除数函数,?(n) = (sum of divisors of n)
是一个乘法功能:相对黄金m和n,我们有?(mn) = ?(m)?(n)
,所以
σ(p 1 k 1 ... p r k r)= [(p 1 k 1 +1 -1)/(p 1 -1)] ... [(p r k r +1 -1)/(p r -1 )].
所以你可以使用任何简单的筛子(例如Eratosthenes筛子的增强版本)来找到最多的素数n
,并且在此过程中,所有数字的因子分解最多为n.(例如,当您进行筛选时,存储每个n 的最小素数因子.然后您可以n
通过迭代对任何数字进行因式分解.)这将比使用任何单独的因子分解算法多次(整体)更快.
BTW:已经存在几个已知友好对的列表(参见例如此处和MathWorld上的链接) - 所以你是试图扩展记录,还是只是为了好玩呢?
Jac*_*ack 12
我建议从Maple中使用的相同算法开始,Quadratic Sieve.
这些算法的问题在于它们在数值计算中真正意味着很多理论.
这是Maple中整数分解的一篇论文.
"从一些非常简单的指令开始 - "使Maple中的整数分解更快" - 我们在Maple和C ......的组合中实现了Quadratic Sieve因子分解算法......"
http://www.cecm.sfu.ca/~pborwein/MITACS/papers/percival.pdf
取决于你的数字有多大。如果您正在寻找友好的配对,您将进行大量分解,因此关键可能不是尽快分解,而是在不同调用之间共享尽可能多的工作。为了加速试验除法,您可以查看记忆,和/或预先计算素数直到您关心的最大数字的平方根。获得质因数分解,然后从中计算所有因数的总和比对每个数字一直循环到 sqrt(n) 更快。
如果您正在寻找非常大的友好对,比如大于 2^64,那么在少数机器上,无论您的因式分解有多快,您都无法通过对每个数字进行因式分解来做到这一点。您用来寻找候选人的捷径可能会帮助您将他们考虑在内。
1GB 内存的更多 2015 C++ 版本 2 27查找表实现:
#include <iostream.h> // cerr, cout, and NULL
#include <string.h> // memcpy()
#define uint unsigned __int32
uint *factors;
const uint MAX_F=134217728; // 2^27
void buildFactors(){
factors=new (nothrow) uint [(MAX_F+1)*2]; // 4 * 2 * 2^27 = 2^30 = 1GB
if(factors==NULL)return; // not able to allocate enough free memory
int i;
for(i=0;i<(MAX_F+1)*2;i++)factors[i]=0;
//Sieve of Eratosthenese
factors[1*2]=1;
factors[1*2+1]=1;
for(i=2;i*i<=MAX_F;i++){
for(;factors[i*2] && i*i<=MAX_F;i++);
factors[i*2]=1;
factors[i*2+1]=i;
for(int j=2;i*j<=MAX_F;j++){
factors[i*j*2]=i;
factors[i*j*2+1]=j;
}
}
for(;i<=MAX_F;i++){
for(;i<=MAX_F && factors[i*2];i++);
if(i>MAX_F)return;
factors[i*2]=1;
factors[i*2+1]=i;
}
}
uint * factor(uint x, int &factorCount){
if(x > MAX_F){factorCount=-1;return NULL;}
uint tmp[70], at=x; int i=0;
while(factors[at*2]>1){
tmp[i++]=factors[at*2];
cout<<"at:"<<at<<" tmp:"<<tmp[i-1]<<endl;
at=factors[at*2+1];
}
if(i==0){
cout<<"at:"<<x<<" tmp:1"<<endl;
tmp[i++]=1;
tmp[i++]=x;
}else{
cout<<"at:"<<at<<" tmp:1"<<endl;
tmp[i++]=at;
}
factorCount=i;
uint *ret=new (nothrow) uint [factorCount];
if(ret!=NULL)
memcpy(ret, tmp, sizeof(uint)*factorCount);
return ret;
}
void main(){
cout<<"Loading factors lookup table"<<endl;
buildFactors(); if(factors==NULL){cerr<<"Need 1GB block of free memory"<<endl;return;}
int size;
uint x=30030;
cout<<"\nFactoring: "<<x<<endl;
uint *f=factor(x,size);
if(size<0){cerr<<x<<" is too big to factor. Choose a number between 1 and "<<MAX_F<<endl;return;}
else if(f==NULL){cerr<<"ran out of memory trying to factor "<<x<<endl;return;}
cout<<"\nThe factors of: "<<x<<" {"<<f[0];
for(int i=1;i<size;i++)
cout<<", "<<f[i];
cout<<"}"<<endl;
delete [] f;
x=30637;
cout<<"\nFactoring: "<<x<<endl;
f=factor(x,size);
cout<<"\nThe factors of: "<<x<<" {"<<f[0];
for(int i=1;i<size;i++)
cout<<", "<<f[i];
cout<<"}"<<endl;
delete [] f;
delete [] factors;
}
Run Code Online (Sandbox Code Playgroud)
更新:或牺牲一些简单性以在 2 28 之后获得更大的范围
#include <iostream.h> // cerr, cout, and NULL
#include <string.h> // memcpy(), memset()
//#define dbg(A) A
#ifndef dbg
#define dbg(A)
#endif
#define uint unsigned __int32
#define uint8 unsigned __int8
#define uint16 unsigned __int16
uint * factors;
uint8 *factors08;
uint16 *factors16;
uint *factors32;
const uint LIMIT_16 = 514; // First 16-bit factor, 514 = 2*257
const uint LIMIT_32 = 131074;// First 32-bit factor, 131074 = 2*65537
const uint MAX_FACTOR = 268501119;
//const uint64 LIMIT_64 = 8,589,934,594; // First 64-bit factor, 2^33+1
const uint TABLE_SIZE = 268435456; // 2^28 => 4 * 2^28 = 2^30 = 1GB 32-bit table
const uint o08=1, o16=257 ,o32=65665; //o64=4294934465
// TableSize = 2^37 => 8 * 2^37 = 2^40 1TB 64-bit table
// => MaxFactor = 141,733,953,600
/* Layout of factors[] array
* Indicies(32-bit) i Value Size AFactorOf(i)
* ---------------- ------ ---------- ----------------
* factors[0..128] [1..513] 8-bit factors08[i-o08]
* factors[129..65408] [514..131073] 16-bit factors16[i-o16]
* factors[65409..268435455] [131074..268501119] 32-bit factors32[i-o32]
*
* Note: stopping at i*i causes AFactorOf(i) to not always be LargestFactor(i)
*/
void buildFactors(){
dbg(cout<<"Allocating RAM"<<endl;)
factors=new (nothrow) uint [TABLE_SIZE]; // 4 * 2^28 = 2^30 = 1GB
if(factors==NULL)return; // not able to allocate enough free memory
uint i,j;
factors08 = (uint8 *)factors;
factors16 = (uint16 *)factors;
factors32 = factors;
dbg(cout<<"Zeroing RAM"<<endl;)
memset(factors,0,sizeof(uint)*TABLE_SIZE);
//for(i=0;i<TABLE_SIZE;i++)factors[i]=0;
//Sieve of Eratosthenese
//8-bit values
dbg(cout<<"Setting: 8-Bit Values"<<endl;)
factors08[1-o08]=1;
for(i=2;i*i<LIMIT_16;i++){
for(;factors08[i-o08] && i*i<LIMIT_16;i++);
dbg(cout<<"Filtering: "<<i<<endl;)
factors08[i-o08]=1;
for(j=2;i*j<LIMIT_16;j++)factors08[i*j-o08]=i;
for(;i*j<LIMIT_32;j++)factors16[i*j-o16]=i;
for(;i*j<=MAX_FACTOR;j++)factors32[i*j-o32]=i;
}
for(;i<LIMIT_16;i++){
for(;i<LIMIT_16 && factors08[i-o08];i++);
dbg(cout<<"Filtering: "<<i<<endl;)
if(i<LIMIT_16){
factors08[i-o08]=1;
j=LIMIT_16/i+(LIMIT_16%i>0);
for(;i*j<LIMIT_32;j++)factors16[i*j-o16]=i;
for(;i*j<=MAX_FACTOR;j++)factors32[i*j-o32]=i;
}
}i--;
dbg(cout<<"Setting: 16-Bit Values"<<endl;)
//16-bit values
for(;i*i<LIMIT_32;i++){
for(;factors16[i-o16] && i*i<LIMIT_32;i++);
factors16[i-o16]=1;
for(j=2;i*j<LIMIT_32;j++)factors16[i*j-o16]=i;
for(;i*j<=MAX_FACTOR;j++)factors32[i*j-o32]=i;
}
for(;i<LIMIT_32;i++){
for(;i<LIMIT_32 && factors16[i-o16];i++);
if(i<LIMIT_32){
factors16[i-o16]=1;
j=LIMIT_32/i+(LIMIT_32%i>0);
for(;i*j<=MAX_FACTOR;j++)factors32[i*j-o32]=i;
}
}i--;
dbg(cout<<"Setting: 32-Bit Values"<<endl;)
//32-bit values
for(;i*i<=MAX_FACTOR;i++){
for(;factors32[i-o32] && i*i<=MAX_FACTOR;i++);
factors32[i-o32]=1;
for(j=2;i*j<=MAX_FACTOR;j++)factors32[i*j-o32]=i;
}
for(;i<=MAX_FACTOR;i++){
for(;i<=MAX_FACTOR && factors32[i-o32];i++);
if(i>MAX_FACTOR)return;
factors32[i-o32]=1;
}
}
uint * factor(uint x, int &factorCount){
if(x > MAX_FACTOR){factorCount=-1;return NULL;}
uint tmp[70], at=x; int i=0;
while(at>=LIMIT_32 && factors32[at-o32]>1){
tmp[i++]=factors32[at-o32];
dbg(cout<<"at32:"<<at<<" tmp:"<<tmp[i-1]<<endl;)
at/=tmp[i-1];
}
if(at<LIMIT_32){
while(at>=LIMIT_16 && factors16[at-o16]>1){
tmp[i++]=factors16[at-o16];
dbg(cout<<"at16:"<<at<<" tmp:"<<tmp[i-1]<<endl;)
at/=tmp[i-1];
}
if(at<LIMIT_16){
while(factors08[at-o08]>1){
tmp[i++]=factors08[at-o08];
dbg(cout<<"at08:"<<at<<" tmp:"<<tmp[i-1]<<endl;)
at/=tmp[i-1];
}
}
}
if(i==0){
dbg(cout<<"at:"<<x<<" tmp:1"<<endl;)
tmp[i++]=1;
tmp[i++]=x;
}else{
dbg(cout<<"at:"<<at<<" tmp:1"<<endl;)
tmp[i++]=at;
}
factorCount=i;
uint *ret=new (nothrow) uint [factorCount];
if(ret!=NULL)
memcpy(ret, tmp, sizeof(uint)*factorCount);
return ret;
}
uint AFactorOf(uint x){
if(x > MAX_FACTOR)return -1;
if(x < LIMIT_16) return factors08[x-o08];
if(x < LIMIT_32) return factors16[x-o16];
return factors32[x-o32];
}
void main(){
cout<<"Loading factors lookup table"<<endl;
buildFactors(); if(factors==NULL){cerr<<"Need 1GB block of free memory"<<endl;return;}
int size;
uint x=13855127;//25255230;//30030;
cout<<"\nFactoring: "<<x<<endl;
uint *f=factor(x,size);
if(size<0){cerr<<x<<" is too big to factor. Choose a number between 1 and "<<MAX_FACTOR<<endl;return;}
else if(f==NULL){cerr<<"ran out of memory trying to factor "<<x<<endl;return;}
cout<<"\nThe factors of: "<<x<<" {"<<f[0];
for(int i=1;i<size;i++)
cout<<", "<<f[i];
cout<<"}"<<endl;
delete [] f;
x=30637;
cout<<"\nFactoring: "<<x<<endl;
f=factor(x,size);
cout<<"\nThe factors of: "<<x<<" {"<<f[0];
for(int i=1;i<size;i++)
cout<<", "<<f[i];
cout<<"}"<<endl;
delete [] f;
delete [] factors;
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
50684 次 |
最近记录: |