我想在我的Pandas数据帧中添加累积和列,以便:
name | day | no
-----|-----------|----
Jack | Monday | 10
Jack | Tuesday | 20
Jack | Tuesday | 10
Jack | Wednesday | 50
Jill | Monday | 40
Jill | Wednesday | 110
Run Code Online (Sandbox Code Playgroud)
变为:
Jack | Monday | 10 | 10
Jack | Tuesday | 30 | 40
Jack | Wednesday | 50 | 90
Jill | Monday | 40 | 40
Jill | Wednesday | 110 | 150
Run Code Online (Sandbox Code Playgroud)
我试过各种连击df.groupby和df.agg(lambda x: cumsum(x))无济于事.提前致谢!
CT *_*Zhu 59
这应该做,需要groupby()两次.
In [52]:
print df
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
In [53]:
print df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
no
name day
Jack Monday 10
Tuesday 40
Wednesday 90
Jill Monday 40
Wednesday 150
Run Code Online (Sandbox Code Playgroud)
注意,结果DataFrame有MultiIndex.
Dmi*_*eev 38
这适用于pandas 0.16.2
In[23]: print df
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
In[24]: df['no_cumulative'] = df.groupby(['name'])['no'].apply(lambda x: x.cumsum())
In[25]: print df
name day no no_cumulative
0 Jack Monday 10 10
1 Jack Tuesday 20 30
2 Jack Tuesday 10 40
3 Jack Wednesday 50 90
4 Jill Monday 40 40
5 Jill Wednesday 110 150
Run Code Online (Sandbox Code Playgroud)
小智 22
修改@Dmitry的答案.这更简单,适用于pandas 0.19.0:
print(df)
name day no
0 Jack Monday 10
1 Jack Tuesday 20
2 Jack Tuesday 10
3 Jack Wednesday 50
4 Jill Monday 40
5 Jill Wednesday 110
df['no_csum'] = df.groupby(['name'])['no'].cumsum()
print(df)
name day no no_csum
0 Jack Monday 10 10
1 Jack Tuesday 20 30
2 Jack Tuesday 10 40
3 Jack Wednesday 50 90
4 Jill Monday 40 40
5 Jill Wednesday 110 150
Run Code Online (Sandbox Code Playgroud)
你应该使用
df['cum_no'] = df.no.cumsum()
Run Code Online (Sandbox Code Playgroud)
http://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.DataFrame.cumsum.html
另一种方式
import pandas as pd
df = pd.DataFrame({'C1' : ['a','a','a','b','b'],
'C2' : [1,2,3,4,5]})
df['cumsum'] = df.groupby(by=['C1'])['C2'].transform(lambda x: x.cumsum())
df
Run Code Online (Sandbox Code Playgroud)
小智 5
而不是df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
(见上文)你也可以做df.set_index(['name', 'day']).groupby(level=0, as_index=False).cumsum()
df.groupby(by=['name','day']).sum() 实际上只是将两列都移动到MultiIndexas_index=False 意味着您之后不需要调用reset_index| 归档时间: |
|
| 查看次数: |
53191 次 |
| 最近记录: |