我有一个python pandas数据框,其中包含2列:time1和time2:
time1 time2
13:00:07.294234 13:00:07.294234
14:00:07.294234 14:00:07.394234
15:00:07.294234 15:00:07.494234
16:00:07.294234 16:00:07.694234
Run Code Online (Sandbox Code Playgroud)
如何生成第三列,其中包含time1和之间的微秒差异time2,如果可能的话,是整数?
如果在 hese 前面加上实际日期,则可以将它们转换为 datetime64 列:
In [11]: '2014-03-19 ' + df
Out[11]:
time1 time2
0 2014-03-19 13:00:07.294234 2014-03-19 13:00:07.294234
1 2014-03-19 14:00:07.294234 2014-03-19 14:00:07.394234
2 2014-03-19 15:00:07.294234 2014-03-19 15:00:07.494234
3 2014-03-19 16:00:07.294234 2014-03-19 16:00:07.694234
[4 rows x 2 columns]
In [12]: df = ('2014-03-19 ' + df).astype('datetime64[ns]')
Out[12]:
time1 time2
0 2014-03-19 20:00:07.294234 2014-03-19 20:00:07.294234
1 2014-03-19 21:00:07.294234 2014-03-19 21:00:07.394234
2 2014-03-19 22:00:07.294234 2014-03-19 22:00:07.494234
3 2014-03-19 23:00:07.294234 2014-03-19 23:00:07.694234
Run Code Online (Sandbox Code Playgroud)
现在您可以减去这些列:
In [13]: delta = df['time2'] - df['time1']
In [14]: delta
Out[14]:
0 00:00:00
1 00:00:00.100000
2 00:00:00.200000
3 00:00:00.400000
dtype: timedelta64[ns]
Run Code Online (Sandbox Code Playgroud)
要获得微秒数,只需将底层纳秒除以 1000:
In [15]: t.astype(np.int64) / 10**3
Out[15]:
0 0
1 100000
2 200000
3 400000
dtype: int64
Run Code Online (Sandbox Code Playgroud)
正如杰夫指出的那样,在最近版本的 numpy 上,您可以除以 1 微秒:
In [16]: t / np.timedelta64(1,'us')
Out[16]:
0 0
1 100000
2 200000
3 400000
dtype: float64
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5752 次 |
| 最近记录: |