将函数应用于3D numpy数组

Pyl*_*lyp 2 python arrays numpy image-processing multidimensional-array

我有一个来自Image(PIL/Pillow)对象的numpy 3D数组.

 [[178 214 235]
  [180 215 236]
  [180 215 235]
  ..., 
  [146 173 194]
  [145 172 193]
  [146 173 194]]
 ..., 
 [[126 171 203]
  [125 169 203]
  [128 171 205]
  ..., 
  [157 171 182]
  [144 167 182]
  [131 160 180]]]
Run Code Online (Sandbox Code Playgroud)

图像大小约为500x500像素.我需要为每个像素应用两个函数.

  1. 将RGB转换为LAB(使用python-colormath中的函数)此函数采用1D数组,[157, 171, 182]并返回带有LAB颜色的1D数组,例如[53.798345635, -10.358443685, 100.358443685].
  2. 使用查找自定义调色板最接近的颜色scipy.spatial.cKDTree.

自定义调色板是kd-tree.

palette = [[0,0,0], [127,127,127], [255,255,255]] #  or [[0.,0.,0.], [50.,0.,0.], [100.,0.,0.]] for LAB color
tree = scipy.spatial.cKDTree(palette)
def find nearest(pixel):
    distance, result = tree.query(pixel)
    new_pixel = palette[result]
    return new_pixel
Run Code Online (Sandbox Code Playgroud)

有没有比使用Python迭代更快的解决方案?例如

for row in array:
    for pixel in row:
        apply_fuction1(pixel) # where pixel is one dimensional array like [157 171 182]
        apply_fuction2(pixel)
Run Code Online (Sandbox Code Playgroud)

UPD1我不知道我做错了什么,但是:

python3 -mtimeit -s'import test' 'test.find_nearest()' # my variant with 2 loops and Image.putdata()
10 loops, best of 3: 3.35 sec per loop
python3 -mtimeit -s'import test' 'test.find_nearest_with_map()' # list comprehension with map and Image.fromarray() by traceur
10 loops, best of 3: 3.67 sec per loop
python3 -mtimeit -s'import test' 'test.along_axis()' # np.apply_along_axis() and Image.fromarray() by AdrienG
10 loops, best of 3: 5.25 sec per loop

def find_nearest(array=test_array):
    new_image = []
    for row in array:
        for pixel in row:
            distance, result = tree.query(pixel)
            new_pixel = palette[result]
            new_image.append(new_pixel)
    im = Image.new('RGB', (300, 200))
    im.putdata(new_image)


def _find_nearest(pixel):
    distance, result = tree.query(pixel)
    new_pixel = palette[result]
    return new_pixel


def along_axis(array=test_array):
    array = np.apply_along_axis(_find_nearest, 2, array)
    im = Image.fromarray(np.uint8(array))


def find_nearest_with_map(array=test_array):
    array = [list(map(_find_nearest, row)) for row in array]
    im = Image.fromarray(np.uint8(array))
Run Code Online (Sandbox Code Playgroud)

Adr*_*enG 6

对不起前面的回答,

使用numpy.apply_along_axis

a = np.arange(12).reshape((4,3))
def sum(array):
    return np.sum(array)

np.apply_along_axis(sum, 1, a)
>>> array([ 3, 12, 21, 30])
Run Code Online (Sandbox Code Playgroud)