Pyl*_*lyp 2 python arrays numpy image-processing multidimensional-array
我有一个来自Image(PIL/Pillow)对象的numpy 3D数组.
[[178 214 235]
[180 215 236]
[180 215 235]
...,
[146 173 194]
[145 172 193]
[146 173 194]]
...,
[[126 171 203]
[125 169 203]
[128 171 205]
...,
[157 171 182]
[144 167 182]
[131 160 180]]]
Run Code Online (Sandbox Code Playgroud)
图像大小约为500x500像素.我需要为每个像素应用两个函数.
[157, 171, 182]并返回带有LAB颜色的1D数组,例如[53.798345635, -10.358443685, 100.358443685].scipy.spatial.cKDTree.自定义调色板是kd-tree.
palette = [[0,0,0], [127,127,127], [255,255,255]] # or [[0.,0.,0.], [50.,0.,0.], [100.,0.,0.]] for LAB color
tree = scipy.spatial.cKDTree(palette)
def find nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
Run Code Online (Sandbox Code Playgroud)
有没有比使用Python迭代更快的解决方案?例如
for row in array:
for pixel in row:
apply_fuction1(pixel) # where pixel is one dimensional array like [157 171 182]
apply_fuction2(pixel)
Run Code Online (Sandbox Code Playgroud)
UPD1我不知道我做错了什么,但是:
python3 -mtimeit -s'import test' 'test.find_nearest()' # my variant with 2 loops and Image.putdata()
10 loops, best of 3: 3.35 sec per loop
python3 -mtimeit -s'import test' 'test.find_nearest_with_map()' # list comprehension with map and Image.fromarray() by traceur
10 loops, best of 3: 3.67 sec per loop
python3 -mtimeit -s'import test' 'test.along_axis()' # np.apply_along_axis() and Image.fromarray() by AdrienG
10 loops, best of 3: 5.25 sec per loop
def find_nearest(array=test_array):
new_image = []
for row in array:
for pixel in row:
distance, result = tree.query(pixel)
new_pixel = palette[result]
new_image.append(new_pixel)
im = Image.new('RGB', (300, 200))
im.putdata(new_image)
def _find_nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
def along_axis(array=test_array):
array = np.apply_along_axis(_find_nearest, 2, array)
im = Image.fromarray(np.uint8(array))
def find_nearest_with_map(array=test_array):
array = [list(map(_find_nearest, row)) for row in array]
im = Image.fromarray(np.uint8(array))
Run Code Online (Sandbox Code Playgroud)
对不起前面的回答,
a = np.arange(12).reshape((4,3))
def sum(array):
return np.sum(array)
np.apply_along_axis(sum, 1, a)
>>> array([ 3, 12, 21, 30])
Run Code Online (Sandbox Code Playgroud)