收集特定时期的Android传感器并计算平均值

iTe*_*ech 5 java multithreading android android-sensors

我正在尝试编写一种方法,该方法在特定时间段内收集加速度计传感器值,并返回该时间段内传感器读数的平均值.

它应该是一个同步即阻塞方法,一旦被调用它将阻塞调用线程一段时间然后将返回传感器平均值

我确实检查了下面类似的问题,但似乎没有适合我的案例的正确解决方案:

SensorEventListener位于单独的线程中

Android - 如何运行传感器(服务,线程,活动)?

Android传感器和线程

一种等待传感器数据的方法

我也尝试使用Executors类似于 这个问题,但无法按照我的意愿使用它.

下面是我的代码框架,其中该方法sensorAverage是一种阻塞方法,它将计算加速度计传感器在一段时间内的平均值等于timeout参数

Average average = new Average(); // Some class to calculate the mean

double sensorAverage(long timeout){
    Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION);
    sensorManager.registerListener(this, sensor,SensorManager.SENSOR_DELAY_NORMAL);

    // This does not work
    Thread.sleep(timeout);

    sensorManager.unregisterListener(this);

    return average.value();
}

public void onSensorChanged(SensorEvent event) {
    if (event.sensor.getType() == Sensor.TYPE_LINEAR_ACCELERATION) {
        double x2 = Math.pow(event.values[0], 2);
        double y2 = Math.pow(event.values[1], 2);
        double z2 = Math.pow(event.values[2], 2);
        average.add(Math.sqrt((x2 + y2 + z2)));
    }
}
Run Code Online (Sandbox Code Playgroud)

编辑:我知道我需要另一个线程,但问题是我需要在特定时间内运行它,到目前为止我找不到合适的工作解决方案.因为当我使用另一个线程时,我总是得到传感器平均值0

iTe*_*ech 4

我设法实现了一个完全符合我想要的解决方案。

一种阻塞方法,收集特定时间段内的传感器值并返回所有传感器读数的统计数据,即平均值和方差。

可以简单地存储所有传感器的值,然后计算平均值和方差;但是,如果长时间收集高频传感器,您可能会耗尽内存。

RunningStat我找到了一个更好的解决方案来使用下面的类实时计算数据流的平均值和方差(即不存储传感器值)

示例代码:

// Calculate statistics of accelerometer values over 300 ms (a blocking method)
RunningStat[] stats = SensorUtils.sensorStats(context, 
                                                  Sensor.TYPE_ACCELEROMETER, 300)
double xMean = stats[0].mean();
double xVar  = stats[0].variance();
Run Code Online (Sandbox Code Playgroud)

完整类代码

public class SensorUtils {

// Collect sensors data for specific period and return statistics of 
// sensor values e.g. mean and variance for x, y and z-axis
public static RunningStat[] sensorStats(Context context, int sensorType,
        long timeout) throws Exception {
    ExecutorService executor = Executors.newSingleThreadExecutor();
    Future<RunningStat[]> future = executor.submit(new SensorTask(context,
            sensorType, timeout));

    RunningStat[] stats = future.get();
    return stats;

}

private static class SensorTask implements Callable<RunningStat[]> {
    private final Context context;
    private final long timeout;
    private final int sensorType;
    // We need a dedicated handler for the onSensorChanged
    HandlerThread handler = new HandlerThread("SensorHandlerThread");

    public SensorTask(Context context, int sensorType, long timeout) {
        this.context = context;
        this.timeout = timeout;
        this.sensorType = sensorType;
    }

    @Override
    public RunningStat[] call() throws Exception {
        final SensorCollector collector = new SensorCollector(context);
        handler.start();
        Thread sensorThread = new Thread() {
            public void run() {
                collector.start(sensorType,
                        new Handler(handler.getLooper()));
            };
        };
        sensorThread.start();
        Thread.sleep(timeout);
        return collector.finishWithResult();
    }
}

private static class SensorCollector implements SensorEventListener {
    protected Context context;
    protected RunningStat[] runningStat;
    protected SensorManager sensorManager;
    protected int sensorType;

    public SensorCollector(Context context) {
        this.context = context;
    }

    protected void start(int sensorType, Handler handle) {
        if (runningStat == null) {
            runningStat = new RunningStat[3];
            runningStat[0] = new RunningStat(3);
            runningStat[1] = new RunningStat(3);
            runningStat[2] = new RunningStat(3);
        } else {
            runningStat[0].clear();
            runningStat[1].clear();
            runningStat[2].clear();
        }
        this.sensorType = sensorType;
        sensorManager = (SensorManager) context
                .getSystemService(Context.SENSOR_SERVICE);
        Sensor sensor = sensorManager.getDefaultSensor(sensorType);
        sensorManager.registerListener(this, sensor,
                SensorManager.SENSOR_DELAY_NORMAL, handle);
    }

    public RunningStat[] finishWithResult() {
        if (sensorManager != null) {
            sensorManager.unregisterListener(this);
        }
        return runningStat;
    }

    @Override
    public void onAccuracyChanged(Sensor sensor, int accuracy) {

    }

    @Override
    public void onSensorChanged(SensorEvent event) {
        if (event.sensor.getType() == sensorType) {
            runningStat[0].push(event.values[0]);
            runningStat[1].push(event.values[1]);
            runningStat[2].push(event.values[2]);
        }
    }
}

}
Run Code Online (Sandbox Code Playgroud)

这是RunningStat代码,它是一个非常方便的类,用于计算数据流的均值和方差,而无需存储数据本身(非常适合计算内存占用非常小的高频传感器的统计数据)

//See Knuth TAOCP vol 2, 3rd edition, page 232
public class RunningStat {
private int n;
private double oldM, newM, oldS, newS;
private int precision = -1;

// An estimate for the t-value (can be read from the t-distribution table)
private static final double T_THRESHOLD = 1.68;

public RunningStat(int precision) {
    this.precision = precision;
}

public RunningStat() {
}

public void clear() {
    n = 0;
}

public void push(double x) {
    n++;


    if (n == 1) {
        oldM = newM = x;
        oldS = 0.0;
    } else {
        newM = oldM + (x - oldM) / n;
        newS = oldS + (x - oldM) * (x - newM);

        // set up for next iteration
        oldM = newM;
        oldS = newS;
    }
}

public int count() {
    return n;
}

public double mean() {
    double mean = (n > 0) ? newM : 0.0;
    if (precision > 0) {
        return round(mean, precision);
    }
    return mean;
}

// The upper bound of the mean confidence interval
public double meanUpper() {
    double mean = (n > 0) ? newM : 0.0;
    double stdError = stdDeviation() / Math.sqrt(n);
    double upperMean = mean + T_THRESHOLD * stdError;
    if (precision > 0) {
        return round((n > 0) ? upperMean : 0.0, precision);
    }
    return upperMean;
}

// The lower bound of the mean confidence interval
public double meanLower() {
    double mean = (n > 0) ? newM : 0.0;
    double stdError = stdDeviation() / Math.sqrt(n);
    double lowerMean = mean - T_THRESHOLD * stdError;
    if (precision > 0) {
        return round((n > 0) ? lowerMean : 0.0, precision);
    }
    return lowerMean;
}

public double variance() {
    if (precision > 0) {
        return round(((n > 1) ? newS / (n - 1) : 0.0), precision);
    }
    return ((n > 1) ? newS / (n - 1) : 0.0);
}

public double stdDeviation() {
    if (precision > 0) {
        return round(Math.sqrt(variance()), precision);
    }
    return Math.sqrt(variance());
}

public void setPrecision(int precision) {
    this.precision = precision;
}

    public static double round(double value, int precision) {
         BigDecimal num = new BigDecimal(value);
         num = num.round(new MathContext(precision, RoundingMode.HALF_UP));
         return num.doubleValue();
    }

// A small test case
public static void main(String[] args) {
    int n = 100;
    RunningStat runningStat = new RunningStat();
    double[] data = new double[n];
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        data[i] = i * i;
        sum += data[i];
        runningStat.push(data[i]);
        System.out.println(runningStat.mean() + " - "
                + runningStat.variance() + " - "
                + runningStat.stdDeviation());
    }

    double mean = sum / n;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum2 = sum2 + (data[i] - mean) * (data[i] - mean);
    }

    double variance = sum2 / (n - 1);
    System.out.println("\n\n" + mean + " - " + variance + " - "
            + Math.sqrt(variance));
}
}
Run Code Online (Sandbox Code Playgroud)