Nil*_*age 2 python dataframe pandas
我有一个DataFrame喜欢的追随者.
df = pd.DataFrame({'id' : [1,1,2,3,2],
'value' : ["a","b","a","a","c"], 'Time' : ['6/Nov/2012 23:59:59 -0600','6/Nov/2012 00:00:05 -0600','7/Nov/2012 00:00:09 -0600','27/Nov/2012 00:00:13 -0600','27/Nov/2012 00:00:17 -0600']})
Run Code Online (Sandbox Code Playgroud)
我需要获得如下输出.
combined_id | enter time | exit time | time difference
Run Code Online (Sandbox Code Playgroud)
combined_id应该通过分组'id'和'value'来创建
g = df.groupby(['id', 'value'])
Run Code Online (Sandbox Code Playgroud)
以下不适用于按两列分组.(如何使用first(),last()这里作为进入和退出时间?)
df['enter'] = g.apply(lambda x: x.first())
Run Code Online (Sandbox Code Playgroud)
为了获得差异会跟着工作吗?
df['delta'] = (df['exit']-df['enter'].shift()).fillna(0)
Run Code Online (Sandbox Code Playgroud)
首先确保您的列是正确的日期时间列:
In [11]: df['Time'] = pd.to_datetime(df['Time'])
Run Code Online (Sandbox Code Playgroud)
现在,您可以执行groupby并使用agg first和lastgroupby方法:
In [12]: g = df.groupby(['id', 'value'])
In [13]: res = g['Time'].agg({'first': 'first', 'last': 'last'})
In [14]: res = g['Time'].agg({'enter': 'first', 'exit': 'last'})
In [15]: res['time_diff'] = res['exit'] - res['enter']
In [16]: res
Out[16]:
exit enter time_diff
id value
1 a 2012-11-06 23:59:59 2012-11-06 23:59:59 0 days
b 2012-11-06 00:00:05 2012-11-06 00:00:05 0 days
2 a 2012-11-07 00:00:09 2012-11-07 00:00:09 0 days
c 2012-11-27 00:00:17 2012-11-27 00:00:17 0 days
3 a 2012-11-27 00:00:13 2012-11-27 00:00:13 0 days
Run Code Online (Sandbox Code Playgroud)
注意:这是一个无聊的例子,因为每个组中只有一个项目......
| 归档时间: |
|
| 查看次数: |
1331 次 |
| 最近记录: |