use*_*808 8 python scikit-learn p-value
这可能是一个简单的问题,但我试图使用分类器的分类器或回归的回归量来计算我的特征的p值.有人可以建议每个案例的最佳方法是什么,并提供示例代码?我想只看到每个功能的p值,而不是像文档中所解释的那样保持功能等的k最佳/百分位数.
谢谢
Fre*_*Foo 11
X, y直接运行重要性测试.使用20news的示例和chi2:
>>> from sklearn.datasets import fetch_20newsgroups_vectorized
>>> from sklearn.feature_selection import chi2
>>> data = fetch_20newsgroups_vectorized()
>>> X, y = data.data, data.target
>>> scores, pvalues = chi2(X, y)
>>> pvalues
array([ 4.10171798e-17, 4.34003018e-01, 9.99999996e-01, ...,
9.99999995e-01, 9.99999869e-01, 9.99981414e-01])
Run Code Online (Sandbox Code Playgroud)
小智 6
您可以使用statsmodels
import statsmodels.api as sm
logit_model=sm.Logit(y_train,X_train)
result=logit_model.fit()
print(result.summary())
Run Code Online (Sandbox Code Playgroud)
该结果会是这样的
Logit Regression Results
==============================================================================
Dep. Variable: y No. Observations: 406723
Model: Logit Df Residuals: 406710
Method: MLE Df Model: 12
Date: Fri, 12 Apr 2019 Pseudo R-squ.: 0.001661
Time: 16:48:45 Log-Likelihood: -2.8145e+05
converged: False LL-Null: -2.8192e+05
LLR p-value: 8.758e-193
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
x1 -0.0037 0.003 -1.078 0.281 -0.010 0.003
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
28541 次 |
| 最近记录: |