use*_*345 5 python numpy scipy linear-regression
所以我有:
t = [0.0, 3.0, 5.0, 7.2, 10.0, 13.0, 15.0, 20.0, 25.0, 30.0, 35.0]
U = [12.5, 10.0, 7.6, 6.0, 4.4, 3.1, 2.5, 1.5, 1.0, 0.5, 0.3]
U_0 = 12.5
y = []
for number in U:
y.append(math.log(number/U_0, math.e))
(m, b) = np.polyfit(t, y, 1)
yp = np.polyval([m, b], t)
plt.plot(t, yp)
plt.show()
Run Code Online (Sandbox Code Playgroud)
因此,通过这样做,我得到线性回归拟合m=-0.1071和b=0.0347.
如何获得m值的偏差或误差?
我想要 m = -0.1071*(1+ plus/minus error)
m是k,b在y = kx + n时是n
import numpy as np
import pandas as pd
import statsmodels.api as sm
import math
U = [12.5, 10.0, 7.6, 6.0, 4.4, 3.1, 2.5, 1.5, 1.0, 0.5, 0.3]
U_0 = 12.5
y = []
for number in U:
y.append(math.log(number/U_0, math.e))
y = np.array(y)
t = np.array([0.0, 3.0, 5.0, 7.2, 10.0, 13.0, 15.0, 20.0, 25.0, 30.0, 35.0])
t = sm.add_constant(t, prepend=False)
model = sm.OLS(y,t)
result = model.fit()
result.summary()
Run Code Online (Sandbox Code Playgroud)

您可以使用scipy.stats.linregress:
m, b, r_value, p_value, std_err = stats.linregress(t, yp)
Run Code Online (Sandbox Code Playgroud)
并且标准偏差将存储在std_err...
| 归档时间: |
|
| 查看次数: |
13957 次 |
| 最近记录: |