Pyt*_*ast 77 python excel xlrd
我有一个Excel文件
Arm_id DSPName DSPCode HubCode PinCode PPTL
1 JaVAS 01 AGR 282001 1,2
2 JaVAS 01 AGR 282002 3,4
3 JaVAS 01 AGR 282003 5,6
Run Code Online (Sandbox Code Playgroud)
我想在表单中保存一个字符串Arm_id,DSPCode,Pincode.此格式是可配置的,即它可能会更改为DSPCode,Arm_id,Pincode.我将格式保存在列表中
FORMAT = ['Arm_id', 'DSPName', 'Pincode']
Run Code Online (Sandbox Code Playgroud)
如果可配置,我如何阅读具有提供名称的特定列的内容FORMAT.
这是我试过的.目前我能够阅读文件中的所有内容
from xlrd import open_workbook
wb = open_workbook('sample.xls')
for s in wb.sheets():
#print 'Sheet:',s.name
values = []
for row in range(s.nrows):
col_value = []
for col in range(s.ncols):
value = (s.cell(row,col).value)
try : value = str(int(value))
except : pass
col_value.append(value)
values.append(col_value)
print values
Run Code Online (Sandbox Code Playgroud)
我的输出是
[[u'Arm_id', u'DSPName', u'DSPCode', u'HubCode', u'PinCode', u'PPTL'], ['1', u'JaVAS', '1', u'AGR', '282001', u'1,2'], ['2', u'JaVAS', '1', u'AGR', '282002', u'3,4'], ['3', u'JaVAS', '1', u'AGR', '282003', u'5,6']]
Run Code Online (Sandbox Code Playgroud)
然后我周围循环values[0]试图找出FORMAT在内容上values[0],然后让指数Arm_id, DSPname and Pincode在values[0],然后从下一个循环,我知道所有的指标FORMAT因素,从而让知道哪些价值,我需要得到的.
但这是一个如此糟糕的解决方案.
如何在excel文件中获取具有名称的特定列的值?
小智 83
一个稍晚的答案,但有了熊猫,可以直接获得一个excel文件的列:
import pandas
import xlrd
df = pandas.read_excel('sample.xls')
#print the column names
print df.columns
#get the values for a given column
values = df['Arm_id'].values
#get a data frame with selected columns
FORMAT = ['Arm_id', 'DSPName', 'Pincode']
df_selected = df[FORMAT]
Run Code Online (Sandbox Code Playgroud)
tam*_*gal 65
这是一种方法:
from xlrd import open_workbook
class Arm(object):
def __init__(self, id, dsp_name, dsp_code, hub_code, pin_code, pptl):
self.id = id
self.dsp_name = dsp_name
self.dsp_code = dsp_code
self.hub_code = hub_code
self.pin_code = pin_code
self.pptl = pptl
def __str__(self):
return("Arm object:\n"
" Arm_id = {0}\n"
" DSPName = {1}\n"
" DSPCode = {2}\n"
" HubCode = {3}\n"
" PinCode = {4} \n"
" PPTL = {5}"
.format(self.id, self.dsp_name, self.dsp_code,
self.hub_code, self.pin_code, self.pptl))
wb = open_workbook('sample.xls')
for sheet in wb.sheets():
number_of_rows = sheet.nrows
number_of_columns = sheet.ncols
items = []
rows = []
for row in range(1, number_of_rows):
values = []
for col in range(number_of_columns):
value = (sheet.cell(row,col).value)
try:
value = str(int(value))
except ValueError:
pass
finally:
values.append(value)
item = Arm(*values)
items.append(item)
for item in items:
print item
print("Accessing one single value (eg. DSPName): {0}".format(item.dsp_name))
print
Run Code Online (Sandbox Code Playgroud)
您不必使用自定义类,您可以简单地使用dict().但是,如果您使用类,则可以通过点符号访问所有值,如上所示.
以下是上述脚本的输出:
Arm object:
Arm_id = 1
DSPName = JaVAS
DSPCode = 1
HubCode = AGR
PinCode = 282001
PPTL = 1
Accessing one single value (eg. DSPName): JaVAS
Arm object:
Arm_id = 2
DSPName = JaVAS
DSPCode = 1
HubCode = AGR
PinCode = 282002
PPTL = 3
Accessing one single value (eg. DSPName): JaVAS
Arm object:
Arm_id = 3
DSPName = JaVAS
DSPCode = 1
HubCode = AGR
PinCode = 282003
PPTL = 5
Accessing one single value (eg. DSPName): JaVAS
Run Code Online (Sandbox Code Playgroud)
Noe*_*ans 11
所以关键部分是抓住header(col_names = s.row(0))并在遍历行时跳过不需要的第一行for row in range(1, s.nrows)- 使用范围从1开始(不是隐式0).然后使用zip来逐步执行包含"name"作为列标题的行.
from xlrd import open_workbook
wb = open_workbook('Book2.xls')
values = []
for s in wb.sheets():
#print 'Sheet:',s.name
for row in range(1, s.nrows):
col_names = s.row(0)
col_value = []
for name, col in zip(col_names, range(s.ncols)):
value = (s.cell(row,col).value)
try : value = str(int(value))
except : pass
col_value.append((name.value, value))
values.append(col_value)
print values
Run Code Online (Sandbox Code Playgroud)
小智 5
通过使用熊猫我们可以轻松阅读excel.
import pandas as pd
import xlrd as xl
from pandas import ExcelWriter
from pandas import ExcelFile
DataF=pd.read_excel("Test.xlsx",sheet_name='Sheet1')
print("Column headings:")
print(DataF.columns)
Run Code Online (Sandbox Code Playgroud)
测试时间:https://repl.it 参考:https://pythonspot.com/read-excel-with-pandas/
| 归档时间: |
|
| 查看次数: |
331616 次 |
| 最近记录: |