Mar*_*old 6 survival-analysis pymc
我试图将简单的生存模型从这里(介绍中的第一个)从PyMC 2移植到PyMC 3.然而,我没有找到任何等同于"观察"的装饰器,并且我尝试编写新的分发失败了.有人可以提供一个例子,如何在PyMC 3中完成这项工作?
这是一个棘手的端口,并且需要三个新概念:
theano张量的使用DensityDistdictasobserved此代码提供与您上面链接到的PyMC2版本等效的模型:
import pymc3 as pm
from pymc.examples import melanoma_data as data
import theano.tensor as t
times = data.t # not to be confused with the theano tensor t!
failure = (data.censored==0).astype(int)
with pm.Model() as model:
beta0 = pm.Normal('beta0', mu=0.0, tau=0.0001)
beta1 = pm.Normal('beta1', mu=0.0, tau=0.0001)
lam = t.exp(beta0 + beta1*data.treat)
def survival_like(failure, value):
return t.sum(failure * t.log(lam) - lam * value)
survive = pm.DensityDist('survive', survival_like,
observed={'failure': failure, 'value': times})
with model:
start = pm.find_MAP()
step = pm.NUTS(scaling=start)
trace = pm.sample(10000, step=step, start=start)
pm.traceplot(trace);
Run Code Online (Sandbox Code Playgroud)
输出如下: