data.frame中每组的平均值

Ian*_*the 144 aggregate r

我有一个data.frame,我需要计算每组的平均值(即每个Month,下面).

Name     Month  Rate1     Rate2
Aira       1      12        23
Aira       2      18        73
Aira       3      19        45
Ben        1      53        19
Ben        2      22        87
Ben        3      19        45
Cat        1      22        87
Cat        2      67        43
Cat        3      45        32
Run Code Online (Sandbox Code Playgroud)

我的期望的输出是像下面,其中对于所述的值Rate1Rate2是组装置.请忽略这个值,我已经为这个例子做了补充.

Name       Rate1       Rate2
Aira        23.21       12.2
Ben         45.23       43.9
Cat         33.22       32.2
Run Code Online (Sandbox Code Playgroud)

jba*_*ums 217

这种类型的操作正是aggregate为以下目的而设计的:

d <- read.table(text=
'Name     Month  Rate1     Rate2
Aira       1      12        23
Aira       2      18        73
Aira       3      19        45
Ben        1      53        19
Ben        2      22        87
Ben        3      19        45
Cat        1      22        87
Cat        2      67        43
Cat        3      45        32', header=TRUE)

aggregate(d[, 3:4], list(d$Name), mean)

  Group.1    Rate1    Rate2
1    Aira 16.33333 47.00000
2     Ben 31.33333 50.33333
3     Cat 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)

在这里,我们聚合data.frame的第3列和第4列d,分组d$Name和应用mean函数.


或者,使用公式界面:

aggregate(. ~ Name, d[-2], mean)
Run Code Online (Sandbox Code Playgroud)

  • 是的,通过将其更改为`aggregate(d [,3:4],list(Name = d $ Name),mean)` (2认同)
  • @jdepypere - 想不出为什么,但仔细看看`split(matrix $ value,matrix $ hour)`的元素可能是值得的,这些元素对应于那些从你的`aggregate`返回'NaN`的元素(即`split(matrix $ value,matrix $ hour)[is.nan(aggregate(as.numeric(matrix $ value),list(matrix $ hour),mean)[,2])]`) (2认同)
  • 很好的答案.要么``aggregate(d [,3:4],list(d [,1]),mean)``或``aggregate(d [,c('Rate1','Rate2')],list(d [ ,c('名称')]),意思是"`更"一致",imho. (2认同)
  • @FabianHabersack 您可以将结果与原始数据“合并”,但是您需要对聚合对象使用不同的名称。使用 dplyr 可以更轻松地完成您想要的操作: `d %&gt;% group_by(Name) %&gt;% mutate(mean1=mean(Rate1),mean2=mean(Rate2))` (2认同)

Sam*_*rke 46

或者从包中使用group_by&:summarise_atdplyr

library(dplyr)

d %>%
  group_by(Name) %>%
  summarise_at(vars(-Month), funs(mean(., na.rm=TRUE)))

# A tibble: 3 x 3
  Name  Rate1 Rate2
  <fct> <dbl> <dbl>
1 Aira   16.3  47.0
2 Ben    31.3  50.3
3 Cat    44.7  54.0
Run Code Online (Sandbox Code Playgroud)

请参阅?summarise_at指定要操作的变量的多种方法.这里vars(-Month)说的除了以外的 所有变量Month.

  • 尝试`d%>%group_by(Name)%>%summarise_at(.vars = names(.)[3:4],.funs = c(mean ="mean"))` (2认同)

Zby*_*nek 34

你也可以使用包plyr,这在某种程度上更通用:

library(plyr)

ddply(d, .(Name), summarize,  Rate1=mean(Rate1), Rate2=mean(Rate2))

  Name    Rate1    Rate2
1 Aira 16.33333 47.00000
2  Ben 31.33333 50.33333
3  Cat 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)


小智 15

第三个很好的选择是使用包data.table,它也有类data.frame,但是你正在寻找的操作计算得更快.

library(data.table)
mydt <- structure(list(Name = c("Aira", "Aira", "Aira", "Ben", "Ben", "Ben", "Cat", "Cat", "Cat"), Month = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), Rate1 = c(15.6396600443877, 2.15649279424609, 6.24692918928743, 2.37658797276116, 34.7500663272292, 3.28750138697048, 29.3265553981065, 17.9821839334431, 10.8639802575958), Rate2 = c(17.1680489538369, 5.84231656330206, 8.54330866437461, 5.88415184986176, 3.02064294862551, 17.2053351400752, 16.9552950199166, 2.56058000170089, 15.7496228048122)), .Names = c("Name", "Month", "Rate1", "Rate2"), row.names = c(NA, -9L), class = c("data.table", "data.frame"))
Run Code Online (Sandbox Code Playgroud)

现在为每个人(名称)取所有3个月的Rate1和Rate2的平均值:首先,确定您想要取的平均值

colstoavg <- names(mydt)[3:4]
Run Code Online (Sandbox Code Playgroud)

现在我们使用lapply来取平均值而不是我们想要的列(colstoavg)

mydt.mean <- mydt[,lapply(.SD,mean,na.rm=TRUE),by=Name,.SDcols=colstoavg]

 mydt.mean
   Name     Rate1     Rate2
1: Aira  8.014361 10.517891
2:  Ben 13.471385  8.703377
3:  Cat 19.390907 11.755166
Run Code Online (Sandbox Code Playgroud)


小智 8

我描述了两种方法,一种基于data.table,另一种基于reshape2包.data.table方式已经有了答案,但我试图让它更清洁,更详细.

数据是这样的:

 d <- structure(list(Name = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L), .Label = c("Aira", "Ben", "Cat"), class = "factor"), 
    Month = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), Rate1 = c(12L, 
    18L, 19L, 53L, 22L, 19L, 22L, 67L, 45L), Rate2 = c(23L, 73L, 
    45L, 19L, 87L, 45L, 87L, 43L, 32L)), .Names = c("Name", "Month", 
"Rate1", "Rate2"), class = "data.frame", row.names = c(NA, -9L
))
head(d)
  Name Month Rate1 Rate2
1 Aira     1    12    23
2 Aira     2    18    73
3 Aira     3    19    45
4  Ben     1    53    19
5  Ben     2    22    87
6  Ben     3    19    45


library("reshape2")
mym <- melt(d, id = c("Name"))
res <- dcast(mym, Name ~ variable, mean)
res
#Name Month    Rate1    Rate2
#1 Aira     2 16.33333 47.00000
#2  Ben     2 31.33333 50.33333
#3  Cat     2 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)

使用data.table:

# At first, I convert the data.frame to data.table and then I group it 
setDT(d)
d[, .(Rate1 = mean(Rate1), Rate2 = mean(Rate2)), by = .(Name)]
#   Name    Rate1    Rate2
#1: Aira 16.33333 47.00000
#2:  Ben 31.33333 50.33333
#3:  Cat 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)

还有另一种方法可以避免使用.SD在data.table中为j编写许多参数

d[, lapply(.SD, mean), by = .(Name)]
#   Name Month    Rate1    Rate2
#1: Aira     2 16.33333 47.00000
#2:  Ben     2 31.33333 50.33333
#3:  Cat     2 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)

如果我们只想要Rate1Rate2那么我们可以使用.SDcols如下:

d[, lapply(.SD, mean), by = .(Name), .SDcols = 3:4]
#  Name    Rate1    Rate2
#1: Aira 16.33333 47.00000
#2:  Ben 31.33333 50.33333
#3:  Cat 44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)


Mar*_*ler 8

以下是在基础中执行此操作的各种方法,R包括替代aggregate方法.以下示例返回每月的工具,我认为这是您所要求的.虽然,可以使用相同的方法返回每人的手段:

使用ave:

my.data <- read.table(text = '
     Name     Month  Rate1     Rate2
     Aira       1      12        23
     Aira       2      18        73
     Aira       3      19        45
     Ben        1      53        19
     Ben        2      22        87
     Ben        3      19        45
     Cat        1      22        87
     Cat        2      67        43
     Cat        3      45        32
', header = TRUE, stringsAsFactors = FALSE, na.strings = 'NA')

Rate1.mean <- with(my.data, ave(Rate1, Month, FUN = function(x) mean(x, na.rm = TRUE)))
Rate2.mean <- with(my.data, ave(Rate2, Month, FUN = function(x) mean(x, na.rm = TRUE)))

my.data <- data.frame(my.data, Rate1.mean, Rate2.mean)
my.data
Run Code Online (Sandbox Code Playgroud)

使用by:

my.data <- read.table(text = '
     Name     Month  Rate1     Rate2
     Aira       1      12        23
     Aira       2      18        73
     Aira       3      19        45
     Ben        1      53        19
     Ben        2      22        87
     Ben        3      19        45
     Cat        1      22        87
     Cat        2      67        43
     Cat        3      45        32
', header = TRUE, stringsAsFactors = FALSE, na.strings = 'NA')

by.month <- as.data.frame(do.call("rbind", by(my.data, my.data$Month, FUN = function(x) colMeans(x[,3:4]))))
colnames(by.month) <- c('Rate1.mean', 'Rate2.mean')
by.month <- cbind(Month = rownames(by.month), by.month)

my.data <- merge(my.data, by.month, by = 'Month')
my.data
Run Code Online (Sandbox Code Playgroud)

使用lapplysplit:

my.data <- read.table(text = '
     Name     Month  Rate1     Rate2
     Aira       1      12        23
     Aira       2      18        73
     Aira       3      19        45
     Ben        1      53        19
     Ben        2      22        87
     Ben        3      19        45
     Cat        1      22        87
     Cat        2      67        43
     Cat        3      45        32
', header = TRUE, stringsAsFactors = FALSE, na.strings = 'NA')

ly.mean <- lapply(split(my.data, my.data$Month), function(x) c(Mean = colMeans(x[,3:4])))
ly.mean <- as.data.frame(do.call("rbind", ly.mean))
ly.mean <- cbind(Month = rownames(ly.mean), ly.mean)

my.data <- merge(my.data, ly.mean, by = 'Month')
my.data
Run Code Online (Sandbox Code Playgroud)

使用sapplysplit:

my.data <- read.table(text = '
     Name     Month  Rate1     Rate2
     Aira       1      12        23
     Aira       2      18        73
     Aira       3      19        45
     Ben        1      53        19
     Ben        2      22        87
     Ben        3      19        45
     Cat        1      22        87
     Cat        2      67        43
     Cat        3      45        32
', header = TRUE, stringsAsFactors = FALSE, na.strings = 'NA')
my.data

sy.mean <- t(sapply(split(my.data, my.data$Month), function(x) colMeans(x[,3:4])))
colnames(sy.mean) <- c('Rate1.mean', 'Rate2.mean')
sy.mean <- data.frame(Month = rownames(sy.mean), sy.mean, stringsAsFactors = FALSE)
my.data <- merge(my.data, sy.mean, by = 'Month')
my.data
Run Code Online (Sandbox Code Playgroud)

使用aggregate:

my.data <- read.table(text = '
     Name     Month  Rate1     Rate2
     Aira       1      12        23
     Aira       2      18        73
     Aira       3      19        45
     Ben        1      53        19
     Ben        2      22        87
     Ben        3      19        45
     Cat        1      22        87
     Cat        2      67        43
     Cat        3      45        32
', header = TRUE, stringsAsFactors = FALSE, na.strings = 'NA')

my.summary <- with(my.data, aggregate(list(Rate1, Rate2), by = list(Month), 
                   FUN = function(x) { mon.mean = mean(x, na.rm = TRUE) } ))

my.summary <- do.call(data.frame, my.summary)
colnames(my.summary) <- c('Month', 'Rate1.mean', 'Rate2.mean')
my.summary

my.data <- merge(my.data, my.summary, by = 'Month')
my.data
Run Code Online (Sandbox Code Playgroud)


joe*_*nko 6

您还可以使用sqldf如下所示的包来完成此操作:

library(sqldf)

x <- read.table(text='Name     Month  Rate1     Rate2
Aira       1      12        23
                Aira       2      18        73
                Aira       3      19        45
                Ben        1      53        19
                Ben        2      22        87
                Ben        3      19        45
                Cat        1      22        87
                Cat        2      67        43
                Cat        3      45        32', header=TRUE)

sqldf("
select 
  Name
  ,avg(Rate1) as Rate1_float
  ,avg(Rate2) as Rate2_float
  ,avg(Rate1) as Rate1
  ,avg(Rate2) as Rate2
from x
group by 
  Name
")

#  Name Rate1_float Rate2_float Rate1 Rate2
#1 Aira    16.33333    47.00000    16    47
#2  Ben    31.33333    50.33333    31    50
#3  Cat    44.66667    54.00000    44    54
Run Code Online (Sandbox Code Playgroud)

我最近转换dplyr为如其他答案所示,但sqldf很好,因为大多数数据分析师/数据科学家/开发人员至少对 SQL 有一定的了解。通过这种方式,我认为它往往比dplyr上面介绍的其他解决方案更具普遍可读性。

更新:为了回应下面的评论,我尝试更新如上所示的代码。但是,行为并不像我预期的那样。似乎列定义(即intvs float)仅在列别名与原始列名称匹配时才进行。当您指定新名称时,将返回聚合列而不进行四舍五入。


小智 5

你也可以使用通用的功能cbind(),并lm()没有拦截:

cbind(lm(d$Rate1~-1+d$Name)$coef,lm(d$Rate2~-1+d$Name)$coef)
>               [,1]     [,2]
>d$NameAira 16.33333 47.00000
>d$NameBen  31.33333 50.33333
>d$NameCat  44.66667 54.00000
Run Code Online (Sandbox Code Playgroud)


归档时间:

查看次数:

395209 次

最近记录:

6 年,5 月 前