所以我有一个非常大的术语文档矩阵:
> class(ph.DTM)
[1] "TermDocumentMatrix" "simple_triplet_matrix"
> ph.DTM
A term-document matrix (109996 terms, 262811 documents)
Non-/sparse entries: 3705693/28904453063
Sparsity : 100%
Maximal term length: 191
Weighting : term frequency (tf)
Run Code Online (Sandbox Code Playgroud)
如何获得每个术语的rowSum(频率)?我试过了:
> apply(ph.DTM, 1, sum)
Error in vector(typeof(x$v), nr * nc) : vector size cannot be NA
In addition: Warning message:
In nr * nc : NAs produced by integer overflow
Run Code Online (Sandbox Code Playgroud)
显然,我知道removeSparseTerms:
ph.DTM2 <- removeSparseTerms(ph.DTM, 0.99999)
Run Code Online (Sandbox Code Playgroud)
这减少了一点:
> ph.DTM2
A term-document matrix (28842 terms, 262811 documents)
Non-/sparse entries: 3612620/7576382242
Sparsity : 100%
Maximal term length: 24
Weighting : term frequency (tf)
Run Code Online (Sandbox Code Playgroud)
但我仍然无法应用任何与矩阵相关的函数:
> as.matrix(ph.DTM2)
Error in vector(typeof(x$v), nr * nc) : vector size cannot be NA
In addition: Warning message:
In nr * nc : NAs produced by integer overflow
Run Code Online (Sandbox Code Playgroud)
我怎样才能在这个对象上得到一个简单的行和?谢谢!!
Ray*_*Ray 22
好的,经过一些更多的谷歌,我遇到了slam包,这使得:
ph.DTM3 <- rollup(ph.DTM, 2, na.rm=TRUE, FUN = sum)
Run Code Online (Sandbox Code Playgroud)
哪个有效.
chr*_*ell 11
正如@badpanda在其中一条评论中提到的,slam现在有稀疏数组的函数row_sums和col_sums函数:
slam::row_sums(dtm, na.rm = T)
slam::col_sums(tdm, na.rm = T)
Run Code Online (Sandbox Code Playgroud)