我想在Opencv中优化SVM参数.但是,每次我使用train_auto
我得到C=1
和gamma=1
.有些人使用LibSVM,但我无法为此编写包装器.这两个trainingData
和labels
是从现有的代码,提供了良好的成绩,所以我试图让相同的参数与该代码取train_auto
.在原始代码C=312.5
和gamma=0.50625
.我看到有人用于CvStatModel
python,是否需要C++?我在哪里弄错了?提前致谢.
代码:
CvParamGrid CvParamGrid_C(pow(2.0,-5), pow(2.0,15), pow(2.0,2));
CvParamGrid CvParamGrid_gamma(pow(2.0,-15), pow(2.0,3), pow(2.0,2));
if (!CvParamGrid_C.check() || !CvParamGrid_gamma.check())
cout<<"The grid is NOT VALID."<<endl;
CvSVMParams paramz;
paramz.kernel_type = CvSVM::RBF;
paramz.svm_type = CvSVM::C_SVC;
paramz.term_crit = cvTermCriteria(CV_TERMCRIT_ITER,100,0.000001);
svm.train_auto(trainingData, labels, Mat(), Mat(), paramz,10, CvParamGrid_C, CvParamGrid_gamma, CvSVM::get_default_grid(CvSVM::P), CvSVM::get_default_grid(CvSVM::NU), CvSVM::get_default_grid(CvSVM::COEF), CvSVM::get_default_grid(CvSVM::DEGREE), true);
svm.get_params();
cout<<"gamma:"<<paramz.gamma<<endl;
cout<<"C:"<<paramz.C<<endl;
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
7234 次 |
最近记录: |