Gee*_*tra 272
如果你想要一个整数的长度和整数中的位数一样,你总是可以将它转换成字符串,str(133)并找到它的长度len(str(123)).
Joh*_*ooy 218
没有转换为字符串
import math
digits = int(math.log10(n))+1
还要处理零和负数
import math
if n > 0:
    digits = int(math.log10(n))+1
elif n == 0:
    digits = 1
else:
    digits = int(math.log10(-n))+2 # +1 if you don't count the '-' 
你可能想把它放在一个函数:)
这是一些基准.len(str())即使是非常小的数字,它已经落后了
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
 timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
Cal*_*twr 35
math.log10很快,但是当你的数字大于999999999999997时会出现问题.这是因为浮点数太多.9s,导致结果向上舍入.
解决方案是对高于该阈值的数字使用while计数器方法.
为了使这更快,创建10 ^ 16,10 ^ 17等等,并作为变量存储在列表中.这样,它就像一个表查找.
def getIntegerPlaces(theNumber):
    if theNumber <= 999999999999997:
        return int(math.log10(theNumber)) + 1
    else:
        counter = 15
        while theNumber >= 10**counter:
            counter += 1
        return counter
Ale*_*lli 22
Python 2.* int需要4或8个字节(32或64位),具体取决于您的Python构建.  sys.maxint(2**31-1对于32位整数,2**63-1对于64位整数)将告诉您获得两种可能性中的哪一种.
在Python 3中,ints(与longPython 2中的s一样)可以采用任意大小的可用内存量; sys.getsizeof为您提供任何给定值一个很好的迹象,但它确实也算一些固定开销:
>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28
如果像其他答案所暗示的那样,你正在考虑整数值的一些字符串表示,那么只需要使用len该表示,无论是在基数10还是其他方面!
BiG*_*YaN 15
设数是n那么数字的位数n由下式给出:
math.floor(math.log10(n))+1
请注意,这将为+ ve整数<10e15提供正确的答案.除此之外,返回类型的精确限制math.log10和答案可能会被1关闭.我只会len(str(n))超越它; 这需要O(log(n))时间与迭代10次幂相同.
感谢@SetiVolkylany将我的注意力带到了这个限制.令人惊讶的是,看似正确的解决方案在实现细节方面有一些警告.
odr*_*dek 12
好吧,如果没有转换为字符串,我会做类似的事情:
def lenDigits(x): 
    """
    Assumes int(x)
    """
    x = abs(x)
    if x < 10:
        return 1
    return 1 + lenDigits(x / 10)
极简主义递归FTW
dat*_*new 12
计算没有将整数转换为字符串的位数:
x=123
x=abs(x)
i = 0
while x >= 10**i:
    i +=1
# i is the number of digits
NoO*_*ere 10
自问这个问题以来已经有好几年了,但是我已经为几种计算整数长度的方法编制了基准。
def libc_size(i): 
    return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`
def str_size(i):
    return len(str(i)) # Length of `i` as a string
def math_size(i):
    return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i
def exp_size(i):
    return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11
def mod_size(i):
    return len("%i" % i) # Uses string modulo instead of str(i)
def fmt_size(i):
    return len("{0}".format(i)) # Same as above but str.format
(libc函数需要一些设置,我没有包括在内)
size_exp感谢Brian Preslopsky,size_str感谢GeekTantra和size_mathJohn La Rooy
结果如下:
Time for libc size:      1.2204 ?s
Time for string size:    309.41 ns
Time for math size:      329.54 ns
Time for exp size:       1.4902 ?s
Time for mod size:       249.36 ns
Time for fmt size:       336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)
(免责声明:该函数在输入1到1,000,000上运行)
下面是结果sys.maxsize - 100000到sys.maxsize:
Time for libc size:      1.4686 ?s
Time for string size:    395.76 ns
Time for math size:      485.94 ns
Time for exp size:       1.6826 ?s
Time for mod size:       364.25 ns
Time for fmt size:       453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)
如您所见,mod_size(len("%i" % i))是最快的,比使用速度稍快,str(i)并且比其他速度快得多。
如亲爱的用户@Calvintwr所述,该函数math.log10在范围[-999999999999997,999999999999997]之外的数字中存在问题,我们得到浮点错误.我在使用JavaScript(Google V8和NodeJS)和C(GNU GCC编译器)时遇到了这个问题,因此'purely mathematically'这里不可能找到解决方案.
import math
def get_count_digits(number: int):
    """Return number of digits in a number."""
    if number == 0:
        return 1
    number = abs(number)
    if number <= 999999999999997:
        return math.floor(math.log10(number)) + 1
    count = 0
    while number:
        count += 1
        number //= 10
    return count
我测试了长度高达20(含)的数字并且可以.它必须足够,因为64位系统上的长度最大整数是19(len(str(sys.maxsize)) == 19).
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
使用Python 3.5测试的所有代码示例
小智 5
这是一个庞大但快速的版本:
def nbdigit ( x ):
    if x >= 10000000000000000 : # 17 -
        return len( str( x ))
    if x < 100000000 : # 1 - 8
        if x < 10000 : # 1 - 4
            if x < 100             : return (x >= 10)+1 
            else                   : return (x >= 1000)+3
        else: # 5 - 8                                                 
            if x < 1000000         : return (x >= 100000)+5 
            else                   : return (x >= 10000000)+7
    else: # 9 - 16 
        if x < 1000000000000 : # 9 - 12
            if x < 10000000000     : return (x >= 1000000000)+9 
            else                   : return (x >= 100000000000)+11
        else: # 13 - 16
            if x < 100000000000000 : return (x >= 10000000000000)+13 
            else                   : return (x >= 1000000000000000)+15
对于不太大的数字,仅进行 5 次比较。在我的电脑上,它比版本快大约 30% math.log10,比len( str())原来快 5%。好吧……如果你不疯狂地使用它的话,不会那么有吸引力。
这是我用来测试/测量我的功能的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易......
| 归档时间: | 
 | 
| 查看次数: | 320667 次 | 
| 最近记录: |