mar*_*bel 3 r strsplit stringr data.table
我有一个67MM的行data.table,人名和姓氏用空格分隔.我只需要为每个单词创建一个新列.
这是一小部分数据:
n <- structure(list(Subscription_Id = c("13.855.231.846.091.000",
"11.156.048.529.090.800", "24.940.584.090.830", "242.753.039.111.124",
"27.843.782.090.830", "13.773.513.145.090.800", "25.691.374.090.830",
"12.236.174.155.090.900", "252.027.904.121.210", "11.136.991.054.110.100"
), Account_Desc = c("AGUAYO CARLA", "LEIVA LILIANA", "FULLANA MARIA LAURA",
"PETREL SERGIO", "IPTICKET SRL", "LEDESMA ORLANDO", "CATTANEO LUIS RAUL",
"CABRAL CARMEN ESTELA", "ITURGOYEN HECTOR", "CASA CASILDO"),
V1 = c("AGUAYO", "LEIVA", "FULLANA", "PETREL", "IPTICKET",
"LEDESMA", "CATTANEO", "CABRAL", "ITURGOYEN", "CASA"), V2 = c("CARLA",
"LILIANA", "MARIA", "SERGIO", "SRL", "ORLANDO", "LUIS", "CARMEN",
"HECTOR", "CASILDO"), V3 = c(NA, NA, "LAURA", NA, NA, NA,
"RAUL", "ESTELA", NA, NA), `NA` = c(NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_
)), .Names = c("Subscription_Id", "Account_Desc", "V1", "V2",
"V3", NA), class = c("data.table", "data.frame"), row.names = c(NA,
-10L), .internal.selfref = <pointer: 0x0000000000200788>)
require("data.table")
n <- data.table(n)
Run Code Online (Sandbox Code Playgroud)
预期产出
# Subscription_Id Account_Desc V1 V2 V3 NA
# 1: 13.855.231.846.091.000 AGUAYO CARLA AGUAYO CARLA NA NA
# 2: 11.156.048.529.090.800 LEIVA LILIANA LEIVA LILIANA NA NA
# 3: 24.940.584.090.830 FULLANA MARIA LAURA FULLANA MARIA LAURA NA
Run Code Online (Sandbox Code Playgroud)
library(stringr)
# This separates the strings, but i loose the Subscription_Id variable.
n[, str_split_fixed(Account_Desc, "[ +]", 4)]
# This doesn't work.
n[, paste0("V",1:4) := str_split_fixed(Account_Desc, "[ +]", 4)]
Run Code Online (Sandbox Code Playgroud)
这有效,但我似乎正在做3次计算.不确定它是否是最有效的方式
cols = paste0("V",1:3)
for(j in 1:3){
set(n,i=NULL,j=cols[j],value = sapply(strsplit(as.character(n$Account_Desc),"[ +]"), "[", j))
}
Run Code Online (Sandbox Code Playgroud)
让我们使用big_n来进行基准测试
big_n <- data.table(Subscription_Id = rep(n[,Subscription_Id],1e7),
Account_Desc = rep(n[,Account_Desc],1e7)
)
Run Code Online (Sandbox Code Playgroud)
我不使用这个规模附近的数据集,所以我不知道这是否有用.想到的一件事是使用matrix和矩阵索引.
由于我不耐烦,我只在我的慢速系统上的1e5行尝试过它:-)
big_n <- data.table(Subscription_Id = rep(n[,Subscription_Id],1e5),
Account_Desc = rep(n[,Account_Desc],1e5))
Run Code Online (Sandbox Code Playgroud)
StringMat <- function(input) {
Temp <- strsplit(input, " ", fixed = TRUE)
Lens <- vapply(Temp, length, 1L)
A <- unlist(Temp, use.names = FALSE)
Rows <- rep(sequence(length(Temp)), Lens)
Cols <- sequence(Lens)
m <- matrix(NA, nrow = length(Temp), ncol = max(Lens),
dimnames = list(NULL, paste0("V", sequence(max(Lens)))))
m[cbind(Rows, Cols)] <- A
m
}
Run Code Online (Sandbox Code Playgroud)
system.time(outB1 <- cbind(big_n, StringMat(big_n$Account_Desc)))
# user system elapsed
# 4.524 0.000 4.533
outB1
# Subscription_Id Account_Desc V1 V2 V3
# 1: 13.855.231.846.091.000 AGUAYO CARLA AGUAYO CARLA NA
# 2: 11.156.048.529.090.800 LEIVA LILIANA LEIVA LILIANA NA
# 3: 24.940.584.090.830 FULLANA MARIA LAURA FULLANA MARIA LAURA
# 4: 242.753.039.111.124 PETREL SERGIO PETREL SERGIO NA
# 5: 27.843.782.090.830 IPTICKET SRL IPTICKET SRL NA
# ---
# 999996: 13.773.513.145.090.800 LEDESMA ORLANDO LEDESMA ORLANDO NA
# 999997: 25.691.374.090.830 CATTANEO LUIS RAUL CATTANEO LUIS RAUL
# 999998: 12.236.174.155.090.900 CABRAL CARMEN ESTELA CABRAL CARMEN ESTELA
# 999999: 252.027.904.121.210 ITURGOYEN HECTOR ITURGOYEN HECTOR NA
# 1000000: 11.136.991.054.110.100 CASA CASILDO CASA CASILDO NA
Run Code Online (Sandbox Code Playgroud)
set_method功能并比较时间set_method <- function(DT){
cols = paste0("V",1:3)
for(j in 1:3){
set(DT,i=NULL,j=cols[j],
value = sapply(strsplit(as.character(DT[, Account_Desc, with = TRUE]),
"[ +]"), "[", j))
}
}
system.time(set_method(big_n))
# user system elapsed
# 25.319 0.022 25.586
Run Code Online (Sandbox Code Playgroud)
str_split_fixed(哎哟!)big_n[, c("V1", "V2", "V3") := NULL]
library(stringr)
system.time(outBrodie <- cbind(big_n, as.data.table(str_split_fixed(
big_n$Account_Desc, "[ +]", 4))))
# user system elapsed
# 204.966 0.514 206.910
Run Code Online (Sandbox Code Playgroud)