问题已从原始编辑.
在阅读了这个有趣的讨论后,我想知道如何使用dplyr替换列中的NAs,例如Lahman击球数据:
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA NA
Run Code Online (Sandbox Code Playgroud)
以下不能像我预期的那样工作
library(dplyr)
library(Lahman)
df <- Batting[ c("yearID", "teamID", "G_batting") ]
df <- group_by(df, teamID )
df$G_batting[is.na(df$G_batting)] <- mean(df$G_batting, na.rm = TRUE)
Run Code Online (Sandbox Code Playgroud)
来源:本地数据框[20 x 3]组:yearID,teamID
yearID teamID G_batting
1 2004 SFN 11.00000
2 2006 CHN 43.00000
3 2007 CHA 2.00000
4 2008 BOS 5.00000
5 2009 SEA 3.00000
6 2010 SEA 4.00000
7 2012 NYA **49.07894**
> mean(Batting$G_battin, na.rm = TRUE)
[1] **49.07894**
Run Code Online (Sandbox Code Playgroud)
实际上,它归咎于整体均值而不是群体均值.你会如何在dplyr链中做到这一点?利用transform
从基础R也并没有因为它的估算总平均值,而不是组平均工作.此方法也将数据转换为常规数据.一个框架.有一个更好的方法吗?
df %.%
group_by( yearID ) %.%
transform(G_batting = ifelse(is.na(G_batting),
mean(G_batting, na.rm = TRUE),
G_batting)
)
Run Code Online (Sandbox Code Playgroud)
编辑:替换transform
为mutate
给出以下错误
Error in mutate_impl(.data, named_dots(...), environment()) :
INTEGER() can only be applied to a 'integer', not a 'double'
Run Code Online (Sandbox Code Playgroud)
编辑:添加as.integer似乎解决了错误并确实产生了预期的结果.另见@ eddi的答案.
df %.%
group_by( teamID ) %.%
mutate(G_batting = ifelse(is.na(G_batting), as.integer(mean(G_batting, na.rm = TRUE)), G_batting))
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA 47
> mean_NYA <- mean(filter(df, teamID == "NYA")$G_batting, na.rm = TRUE)
> as.integer(mean_NYA)
[1] 47
Run Code Online (Sandbox Code Playgroud)
编辑:关注@ Romain的评论我从github安装了dplyr:
> head(df,10)
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA NA
8 1954 ML1 122
9 1955 ML1 153
10 1956 ML1 153
> df %.%
+ group_by(teamID) %.%
+ mutate(G_batting = ifelse(is.na(G_batting), mean(G_batting, na.rm = TRUE), G_batting))
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 0
2 2006 CHN 0
3 2007 CHA 0
4 2008 BOS 0
5 2009 SEA 0
6 2010 SEA 1074266112
7 2012 NYA 90693125
8 1954 ML1 122
9 1955 ML1 153
10 1956 ML1 153
.. ... ... ...
Run Code Online (Sandbox Code Playgroud)
所以我没有得到错误(好),但我得到了(看似)奇怪的结果.
edd*_*ddi 32
您遇到的主要问题是在列为整数mean
时返回double G_batting
.所以包装均值as.integer
可以工作,或者您需要将整个列转换为numeric
我猜.
也就是说,这里有几个data.table
选择 - 我没有检查哪一个更快.
library(data.table)
# using ifelse
dt = data.table(a = 1:2, b = c(1,2,NA,NA,3,4,5,6,7,8))
dt[, b := ifelse(is.na(b), mean(b, na.rm = T), b), by = a]
# using a temporary column
dt = data.table(a = 1:2, b = c(1,2,NA,NA,3,4,5,6,7,8))
dt[, b.mean := mean(b, na.rm = T), by = a][is.na(b), b := b.mean][, b.mean := NULL]
Run Code Online (Sandbox Code Playgroud)
这就是我想要理想的事情(有关于此的FR):
# again, atm this is pure fantasy and will not work
dt[, b[is.na(b)] := mean(b, na.rm = T), by = a]
Run Code Online (Sandbox Code Playgroud)
该dplyr
版本ifelse
是(在OP):
dt %>% group_by(a) %>% mutate(b = ifelse(is.na(b), mean(b, na.rm = T), b))
Run Code Online (Sandbox Code Playgroud)
我不确定如何data.table
在一行中实现第二个想法dplyr
.我也不确定如何停止dplyr
加扰/排序数据(除了创建索引列).