Rus*_*mIS 0 java performance microbenchmark
阅读问题后为什么处理排序数组的速度比未排序数组快? 我们曾尝试将变量设置为volatile(我预计,当我使用volatile时,它必须工作得更慢,但工作速度更快)这是我的代码没有volatile :(工作时间约为11秒)
import java.util.Arrays;
import java.util.Random;
public class GGGG {
public static void main(String[] args) {
int arraySize = 32768;
int data[];
data = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c) {
data[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 200000; ++i) {
for (int c = 0; c < arraySize; ++c) {
if (data[c] >= 128) {
sum += data[c];
}
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
System.out.println("=========================");
}
Run Code Online (Sandbox Code Playgroud)
输出是:
10.876173341
sum = 310368400000
=========================
Run Code Online (Sandbox Code Playgroud)
这是当我使用arraySize和数据变量作为volatile时,它工作大约7秒:
import java.util.Arrays;
import java.util.Random;
public class GGGG {
static volatile int arraySize = 32768;
static volatile int data[];
public static void main(String[] args) {
data = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c) {
data[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 200000; ++i) {
for (int c = 0; c < arraySize; ++c) {
if (data[c] >= 128) {
sum += data[c];
}
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
System.out.println("=========================");
}
Run Code Online (Sandbox Code Playgroud)
而volatile的输出是:
6.776267265
sum = 310368400000
=========================
Run Code Online (Sandbox Code Playgroud)
所有我都期望用volatile来减缓这个过程,但它的工作速度更快.发生了什么?
我将仅列出您的代码的两个主要问题:
main方法中,因此JIT编译的代码只能通过On-Stack Replacement运行.使用该jmh工具重做您的情况,我得到的时间与预期一样.
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations = 3, time = 2)
@Measurement(iterations = 5, time = 3)
@State(Scope.Thread)
@Threads(1)
@Fork(2)
public class Writing
{
static final int ARRAY_SIZE = 32768;
int data[] = new int[ARRAY_SIZE];
volatile int volatileData[] = new int[ARRAY_SIZE];
@Setup public void setup() {
Random rnd = new Random(0);
for (int c = 0; c < ARRAY_SIZE; ++c) {
data[c] = rnd.nextInt() % 256;
volatileData[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
System.arraycopy(data, 0, volatileData, 0, ARRAY_SIZE);
}
@GenerateMicroBenchmark
public long sum() {
long sum = 0;
for (int c = 0; c < ARRAY_SIZE; ++c) if (data[c] >= 128) sum += data[c];
return sum;
}
@GenerateMicroBenchmark
public long volatileSum() {
long sum = 0;
for (int c = 0; c < ARRAY_SIZE; ++c) if (volatileData[c] >= 128) sum += volatileData[c];
return sum;
}
}
Run Code Online (Sandbox Code Playgroud)
这些是结果:
Benchmark Mode Samples Mean Mean error Units
sum avgt 10 21.956 0.221 us/op
volatileSum avgt 10 40.561 0.264 us/op
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
412 次 |
| 最近记录: |