从csv文件中读取列的多索引

nut*_*hip 20 csv multi-index pandas

我有一个.csv文件,如下所示:

Male, Male, Male, Female, Female
R, R, L, R, R
.86, .67, .88, .78, .81
Run Code Online (Sandbox Code Playgroud)

我想把它读成df,所以我有:

    Male        Female
    R       L   R
0   .86 .67 .88 .78 .81
Run Code Online (Sandbox Code Playgroud)

我做了:

df = pd.read_csv('file.csv', header=[0,1])
Run Code Online (Sandbox Code Playgroud)

headers不削减它.结果如何

Empty DataFrame
Columns: [(Male, R), (Male, R), (Male, L), (Female, R), (Female, R)]
Index: []
Run Code Online (Sandbox Code Playgroud)

然而,标题上的文档说:

(...)Can be a list of integers that specify row
locations for a multi-index on the columns E.g. [0,1,3]
Run Code Online (Sandbox Code Playgroud)

我究竟做错了什么?我怎么可能让它工作?

wai*_*kuo 28

我认为问题是你有重复的列:两个(女性,R).

不确定它是否是错误或重复的列是不可接受的.这是给你的解决方法:

首先用tupleize_cols = True读取csv

In [61]: df = pd.read_csv('test.csv', header=[0, 1], skipinitialspace=True, tupleize_cols=True)

In [62]: df
Out[62]: 
   (Male, R)  (Male, R)  (Male, L)  (Female, R)  (Female, R)
0       0.67       0.67       0.88         0.81         0.81

[1 rows x 5 columns]
Run Code Online (Sandbox Code Playgroud)

然后将列的类型从Index转换为MultiIndex

In [63]: df.columns = pd.MultiIndex.from_tuples(df.columns)

In [64]: df
Out[64]: 
   Male              Female      
      R     R     L       R     R
0  0.67  0.67  0.88    0.81  0.81

[1 rows x 5 columns]
Run Code Online (Sandbox Code Playgroud)

  • C:\Python\Python36_64b\lib\site-packages\pandas\io\parsers.py:813: FutureWarning: 'tupleize_cols' 参数已被弃用,将在未来版本中删除。列元组将始终转换为 MultiIndex。self.options, self.engine = self._clean_options(options, engine) (2认同)

Wil*_*hes 8

从熊猫的0.21版本开始,默认情况下会创建MultiIndexes,因此df = pd.read_csv('file.csv', header=[0,1])应该做。