can*_*ner 32 python scipy pandas
我想知道在Pandas DataFrames中是否有一种优雅和简便的方式来按数据类型(dtype)选择列.即仅从DataFrame中选择int64列.
详细说明,有些东西
df.select_columns(dtype=float64)
Run Code Online (Sandbox Code Playgroud)
在此先感谢您的帮助
And*_*den 45
从0.14.1开始,有一种select_dtypes
方法可以让你更优雅/更普遍地做到这一点.
In [11]: df = pd.DataFrame([[1, 2.2, 'three']], columns=['A', 'B', 'C'])
In [12]: df.select_dtypes(include=['int'])
Out[12]:
A
0 1
Run Code Online (Sandbox Code Playgroud)
要选择所有数字类型,请使用numpy dtype numpy.number
In [13]: df.select_dtypes(include=[np.number])
Out[13]:
A B
0 1 2.2
In [14]: df.select_dtypes(exclude=[object])
Out[14]:
A B
0 1 2.2
Run Code Online (Sandbox Code Playgroud)
我想通过添加选择所有浮动 dtype或所有整数 dtype的选项来扩展现有答案:
演示:
np.random.seed(1234)
df = pd.DataFrame({
'a':np.random.rand(3),
'b':np.random.rand(3).astype('float32'),
'c':np.random.randint(10,size=(3)).astype('int16'),
'd':np.arange(3).astype('int32'),
'e':np.random.randint(10**7,size=(3)).astype('int64'),
'f':np.random.choice([True, False], 3),
'g':pd.date_range('2000-01-01', periods=3)
})
Run Code Online (Sandbox Code Playgroud)
产量:
In [2]: df
Out[2]:
a b c d e f g
0 0.191519 0.785359 6 0 7578569 False 2000-01-01
1 0.622109 0.779976 8 1 7981439 True 2000-01-02
2 0.437728 0.272593 0 2 2558462 True 2000-01-03
In [3]: df.dtypes
Out[3]:
a float64
b float32
c int16
d int32
e int64
f bool
g datetime64[ns]
dtype: object
Run Code Online (Sandbox Code Playgroud)
选择所有浮动数字列:
In [4]: df.select_dtypes(include=['floating'])
Out[4]:
a b
0 0.191519 0.785359
1 0.622109 0.779976
2 0.437728 0.272593
In [5]: df.select_dtypes(include=['floating']).dtypes
Out[5]:
a float64
b float32
dtype: object
Run Code Online (Sandbox Code Playgroud)
选择所有整数列:
In [6]: df.select_dtypes(include=['integer'])
Out[6]:
c d e
0 6 0 7578569
1 8 1 7981439
2 0 2 2558462
In [7]: df.select_dtypes(include=['integer']).dtypes
Out[7]:
c int16
d int32
e int64
dtype: object
Run Code Online (Sandbox Code Playgroud)
选择所有数字列:
In [8]: df.select_dtypes(include=['number'])
Out[8]:
a b c d e
0 0.191519 0.785359 6 0 7578569
1 0.622109 0.779976 8 1 7981439
2 0.437728 0.272593 0 2 2558462
In [9]: df.select_dtypes(include=['number']).dtypes
Out[9]:
a float64
b float32
c int16
d int32
e int64
dtype: object
Run Code Online (Sandbox Code Playgroud)
多个包含用于选择具有类型列表的列,例如 float64 和 int64
df_numeric = df.select_dtypes(include=[np.float64,np.int64])
Run Code Online (Sandbox Code Playgroud)