Cra*_*g H 9 variables floating-point inequality
比较IEEE浮点数和双精度数据的最佳方法是什么?我听说过几种方法,但我想看看社区的想法.
我认为最好的方法是比较ULP.
bool is_nan(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) == 0x7f800000 && (*reinterpret_cast<unsigned __int32*>(&f) & 0x007fffff) != 0;
}
bool is_finite(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) != 0x7f800000;
}
// if this symbol is defined, NaNs are never equal to anything (as is normal in IEEE floating point)
// if this symbol is not defined, NaNs are hugely different from regular numbers, but might be equal to each other
#define UNEQUAL_NANS 1
// if this symbol is defined, infinites are never equal to finite numbers (as they're unimaginably greater)
// if this symbol is not defined, infinities are 1 ULP away from +/- FLT_MAX
#define INFINITE_INFINITIES 1
// test whether two IEEE floats are within a specified number of representable values of each other
// This depends on the fact that IEEE floats are properly ordered when treated as signed magnitude integers
bool equal_float(float lhs, float rhs, unsigned __int32 max_ulp_difference)
{
#ifdef UNEQUAL_NANS
if(is_nan(lhs) || is_nan(rhs))
{
return false;
}
#endif
#ifdef INFINITE_INFINITIES
if((is_finite(lhs) && !is_finite(rhs)) || (!is_finite(lhs) && is_finite(rhs)))
{
return false;
}
#endif
signed __int32 left(*reinterpret_cast<signed __int32*>(&lhs));
// transform signed magnitude ints into 2s complement signed ints
if(left < 0)
{
left = 0x80000000 - left;
}
signed __int32 right(*reinterpret_cast<signed __int32*>(&rhs));
// transform signed magnitude ints into 2s complement signed ints
if(right < 0)
{
right = 0x80000000 - right;
}
if(static_cast<unsigned __int32>(std::abs(left - right)) <= max_ulp_difference)
{
return true;
}
return false;
}
Run Code Online (Sandbox Code Playgroud)
类似的技术可用于双打.诀窍是转换浮点数以便它们被排序(就像整数一样)然后只看它们有多么不同.
我不知道为什么这个该死的东西搞砸了我的下划线.编辑:哦,也许这只是预览的人工制品.那没关系.
| 归档时间: |
|
| 查看次数: |
5077 次 |
| 最近记录: |