我想设置dtype多列的s pd.Dataframe(我有一个文件,我必须手动解析到列表列表,因为该文件不适合pd.read_csv)
import pandas as pd
print pd.DataFrame([['a','1'],['b','2']],
dtype={'x':'object','y':'int'},
columns=['x','y'])
Run Code Online (Sandbox Code Playgroud)
我明白了
ValueError: entry not a 2- or 3- tuple
Run Code Online (Sandbox Code Playgroud)
我可以设置它们的唯一方法是循环遍历每个列变量并重铸astype.
dtypes = {'x':'object','y':'int'}
mydata = pd.DataFrame([['a','1'],['b','2']],
columns=['x','y'])
for c in mydata.columns:
mydata[c] = mydata[c].astype(dtypes[c])
print mydata['y'].dtype #=> int64
Run Code Online (Sandbox Code Playgroud)
有没有更好的办法?
Jac*_*tes 59
对于那些来自Google(等)的人,比如我自己:
convert_objects 自0.17以来已被弃用 - 如果你使用它,你会收到类似这样的警告:
FutureWarning: convert_objects is deprecated. Use the data-type specific converters
pd.to_datetime, pd.to_timedelta and pd.to_numeric.
Run Code Online (Sandbox Code Playgroud)
您应该执行以下操作:
df =df.astype(np.float) df["A"] =pd.to_numeric(df["A"])And*_*den 55
从0.17开始,您必须使用显式转换:
pd.to_datetime, pd.to_timedelta and pd.to_numeric
Run Code Online (Sandbox Code Playgroud)
(如下所述,不再有"魔法",convert_objects已在0.17中弃用)
df = pd.DataFrame({'x': {0: 'a', 1: 'b'}, 'y': {0: '1', 1: '2'}, 'z': {0: '2018-05-01', 1: '2018-05-02'}})
df.dtypes
x object
y object
z object
dtype: object
df
x y z
0 a 1 2018-05-01
1 b 2 2018-05-02
Run Code Online (Sandbox Code Playgroud)
您可以将这些应用于要转换的每列:
df["y"] = pd.to_numeric(df["y"])
df["z"] = pd.to_datetime(df["z"])
df
x y z
0 a 1 2018-05-01
1 b 2 2018-05-02
df.dtypes
x object
y int64
z datetime64[ns]
dtype: object
Run Code Online (Sandbox Code Playgroud)
并确认dtype已更新.
pandas的旧/弃用答案0.12 - 0.16:您可以convert_objects用来推断更好的dtypes:
In [21]: df
Out[21]:
x y
0 a 1
1 b 2
In [22]: df.dtypes
Out[22]:
x object
y object
dtype: object
In [23]: df.convert_objects(convert_numeric=True)
Out[23]:
x y
0 a 1
1 b 2
In [24]: df.convert_objects(convert_numeric=True).dtypes
Out[24]:
x object
y int64
dtype: object
Run Code Online (Sandbox Code Playgroud)
魔法!(很遗憾看到它被弃用了.)
Lau*_*ren 35
您可以使用pandas显式设置类型,DataFrame.astype(dtype, copy=True, raise_on_error=True, **kwargs)并使用您想要的dtypes传入字典dtype
这是一个例子:
import pandas as pd
wheel_number = 5
car_name = 'jeep'
minutes_spent = 4.5
# set the columns
data_columns = ['wheel_number', 'car_name', 'minutes_spent']
# create an empty dataframe
data_df = pd.DataFrame(columns = data_columns)
df_temp = pd.DataFrame([[wheel_number, car_name, minutes_spent]],columns = data_columns)
data_df = data_df.append(df_temp, ignore_index=True)
In [11]: data_df.dtypes
Out[11]:
wheel_number float64
car_name object
minutes_spent float64
dtype: object
data_df = data_df.astype(dtype= {"wheel_number":"int64",
"car_name":"object","minutes_spent":"float64"})
Run Code Online (Sandbox Code Playgroud)
现在你可以看到它已经改变了
In [18]: data_df.dtypes
Out[18]:
wheel_number int64
car_name object
minutes_spent float64
Run Code Online (Sandbox Code Playgroud)
Kau*_*ose 11
设置列类型的另一种方式是先构造一个numpy的记录阵列成你想要的类型,填好,然后将它传递给一个数据帧的构造.
import pandas as pd
import numpy as np
x = np.empty((10,), dtype=[('x', np.uint8), ('y', np.float64)])
df = pd.DataFrame(x)
df.dtypes ->
x uint8
y float64
Run Code Online (Sandbox Code Playgroud)
您最好使用类型化的 np.arrays,然后将数据和列名称作为字典传递。
import numpy as np
import pandas as pd
# Feature: np arrays are 1: efficient, 2: can be pre-sized
x = np.array(['a', 'b'], dtype=object)
y = np.array([ 1 , 2 ], dtype=np.int32)
df = pd.DataFrame({
'x' : x, # Feature: column name is near data array
'y' : y,
}
)
Run Code Online (Sandbox Code Playgroud)