Pandas:使用循环和分层索引将多个csv文件导入数据框

mel*_*ver 11 python csv hierarchical-data pandas

我想从目标目录中读取多个CSV文件(具有不同数量的列)到单个Python Pandas DataFrame中,以便有效地搜索和提取数据.

示例文件:

Events 
1,0.32,0.20,0.67
2,0.94,0.19,0.14,0.21,0.94
3,0.32,0.20,0.64,0.32
4,0.87,0.13,0.61,0.54,0.25,0.43 
5,0.62,0.21,0.77,0.44,0.16
Run Code Online (Sandbox Code Playgroud)

这是我到目前为止:

# get a list of all csv files in target directory
my_dir = "C:\\Data\\"
filelist = []
os.chdir( my_dir )
for files in glob.glob( "*.csv" ) :
    filelist.append(files)

# read each csv file into single dataframe and add a filename reference column 
# (i.e. file1, file2, file 3) for each file read
df = pd.DataFrame()
columns = range(1,100)
for c, f in enumerate(filelist) :
    key = "file%i" % c
    frame = pd.read_csv( (my_dir + f), skiprows = 1, index_col=0, names=columns )
    frame['key'] = key
    df = df.append(frame,ignore_index=True)
Run Code Online (Sandbox Code Playgroud)

(索引工作不正常)

从本质上讲,下面的脚本正是我想要的(尝试和测试),但需要通过10个或更多csv文件循环:

df1 = pd.DataFrame()
df2 = pd.DataFrame()
columns = range(1,100)
df1 = pd.read_csv("C:\\Data\\Currambene_001y09h00m_events.csv", 
                  skiprows = 1, index_col=0, names=columns)
df2 = pd.read_csv("C:\\Data\\Currambene_001y12h00m_events.csv", 
                  skiprows = 1, index_col=0, names=columns)
keys = [('file1'), ('file2')]
df = pd.concat([df1, df2], keys=keys, names=['fileno'])
Run Code Online (Sandbox Code Playgroud)

我找到了许多相关的链接,但是我仍然无法使其工作:

dmv*_*nna 15

您需要决定要在哪个轴上附加文件.熊猫总会尝试通过以下方式做正确的事情:

  1. 假设每个文件中的每一列都不同,并在必要时将数字附加到文件中具有相似名称的列,以便它们不会混合;
  2. 属于文件中相同行索引的项目并排放置在各自的列下.

有效追加的技巧是侧向提示文件,因此您可以获得所需的行为以匹配pandas.concat将要执行的操作.这是我的食谱:

from pandas import *
files = !ls *.csv # IPython magic
d = concat([read_csv(f, index_col=0, header=None, axis=1) for f in files], keys=files)
Run Code Online (Sandbox Code Playgroud)

请注意,它read_csv被转置axis=1,因此它将在列轴上连接,保留其名称.如果需要,可以将生成的DataFrame转换回来d.T.

编辑:

对于每个源文件中的不同列数,您需要提供标头.我知道你的源文件中没有标题,所以让我们用一个简单的函数创建一个标题:

def reader(f):
    d = read_csv(f, index_col=0, header=None, axis=1)
    d.columns = range(d.shape[1])
    return d

df = concat([reader(f) for f in files], keys=files)
Run Code Online (Sandbox Code Playgroud)