Jos*_*del 120
h5py提供了数据集和组的模型.前者基本上是数组,后者你可以认为是目录.每个都被命名.您应该查看API和示例的文档:
http://docs.h5py.org/en/latest/quick.html
您预先创建所有数据并且只想将其保存到hdf5文件的简单示例如下所示:
In [1]: import numpy as np
In [2]: import h5py
In [3]: a = np.random.random(size=(100,20))
In [4]: h5f = h5py.File('data.h5', 'w')
In [5]: h5f.create_dataset('dataset_1', data=a)
Out[5]: <HDF5 dataset "dataset_1": shape (100, 20), type "<f8">
In [6]: h5f.close()
Run Code Online (Sandbox Code Playgroud)
然后,您可以使用以下命令加载该数据:'
In [10]: h5f = h5py.File('data.h5','r')
In [11]: b = h5f['dataset_1'][:]
In [12]: h5f.close()
In [13]: np.allclose(a,b)
Out[13]: True
Run Code Online (Sandbox Code Playgroud)
绝对查看文档:
写入hdf5文件取决于h5py或pytables(每个都有一个不同的python API,它位于hdf5文件规范之上).你也应该看看通过numpy的原生提供,如其他简单的二进制格式np.save,np.savez等等:
http://docs.scipy.org/doc/numpy/reference/routines.io.html
Lav*_*dor 88
一个清洁的方式来处理文件打开/关闭,避免内存泄漏:
准备:
import numpy as np
import h5py
data_to_write = np.random.random(size=(100,20)) # or some such
Run Code Online (Sandbox Code Playgroud)
写:
with h5py.File('name-of-file.h5', 'w') as hf:
hf.create_dataset("name-of-dataset", data=data_to_write)
Run Code Online (Sandbox Code Playgroud)
读:
with h5py.File('name-of-file.h5', 'r') as hf:
data = hf['name-of-dataset'][:]
Run Code Online (Sandbox Code Playgroud)