s_h*_*key 22 python interpolation numpy scipy qhull
我有几个值在同一个不规则网格上定义(x, y, z),我想插入到新网格上(x1, y1, z1).即,我有f(x, y, z), g(x, y, z), h(x, y, z),我想计算f(x1, y1, z1), g(x1, y1, z1), h(x1, y1, z1).
目前我正在使用这个scipy.interpolate.griddata并且效果很好.但是,因为我必须单独执行每个插值并且有很多点,所以它很慢,在计算中有很多重复(即找到哪些点最接近,设置网格等等).
有没有办法加快计算速度并减少重复计算?即沿着定义两个网格的线条,然后更改插值的值?
Jai*_*ime 37
每次拨打电话时都会发生以下事情scipy.interpolate.griddata:
sp.spatial.qhull.Delaunay对不规则网格坐标进行三角测量.对于所有插值,前三个步骤是相同的,因此如果您可以为每个新网格点存储封闭单形的顶点索引和插值的权重,则可以将计算量减少很多.遗憾的是,直接使用可用的功能并不容易,尽管确实可以:
import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import itertools
def interp_weights(xyz, uvw):
tri = qhull.Delaunay(xyz)
simplex = tri.find_simplex(uvw)
vertices = np.take(tri.simplices, simplex, axis=0)
temp = np.take(tri.transform, simplex, axis=0)
delta = uvw - temp[:, d]
bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))
def interpolate(values, vtx, wts):
return np.einsum('nj,nj->n', np.take(values, vtx), wts)
Run Code Online (Sandbox Code Playgroud)
该函数interp_weights执行上面列出的前三个步骤的计算.然后该函数interpolate使用这些计算值非常快速地执行步骤4:
m, n, d = 3.5e4, 3e3, 3
# make sure no new grid point is extrapolated
bounding_cube = np.array(list(itertools.product([0, 1], repeat=d)))
xyz = np.vstack((bounding_cube,
np.random.rand(m - len(bounding_cube), d)))
f = np.random.rand(m)
g = np.random.rand(m)
uvw = np.random.rand(n, d)
In [2]: vtx, wts = interp_weights(xyz, uvw)
In [3]: np.allclose(interpolate(f, vtx, wts), spint.griddata(xyz, f, uvw))
Out[3]: True
In [4]: %timeit spint.griddata(xyz, f, uvw)
1 loops, best of 3: 2.81 s per loop
In [5]: %timeit interp_weights(xyz, uvw)
1 loops, best of 3: 2.79 s per loop
In [6]: %timeit interpolate(f, vtx, wts)
10000 loops, best of 3: 66.4 us per loop
In [7]: %timeit interpolate(g, vtx, wts)
10000 loops, best of 3: 67 us per loop
Run Code Online (Sandbox Code Playgroud)
首先,它是一样的griddata,这是好的.其次,设置插值,即计算vtx并wts采用与调用大致相同的方式griddata.但第三,您现在几乎可以立即在同一网格上插入不同的值.
griddata这里没有考虑的唯一事情是分配fill_value必须外推的点.您可以通过检查至少一个权重为负数的点来做到这一点,例如:
def interpolate(values, vtx, wts, fill_value=np.nan):
ret = np.einsum('nj,nj->n', np.take(values, vtx), wts)
ret[np.any(wts < 0, axis=1)] = fill_value
return ret
Run Code Online (Sandbox Code Playgroud)
小智 6
非常感谢 Jaime 的解决方案(即使我真的不明白重心计算是如何完成的......)
在这里,您将找到一个改编自他的 2D 案例的示例:
import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np
def interp_weights(xy, uv,d=2):
tri = qhull.Delaunay(xy)
simplex = tri.find_simplex(uv)
vertices = np.take(tri.simplices, simplex, axis=0)
temp = np.take(tri.transform, simplex, axis=0)
delta = uv - temp[:, d]
bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))
def interpolate(values, vtx, wts):
return np.einsum('nj,nj->n', np.take(values, vtx), wts)
m, n = 101,201
mi, ni = 1001,2001
[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))
xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,0]=Y.flatten()
xy[:,1]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
uv[:,0]=Yi.flatten()
uv[:,1]=Xi.flatten()
values=np.cos(2*X)*np.cos(2*Y)
#Computed once and for all !
vtx, wts = interp_weights(xy, uv)
valuesi=interpolate(values.flatten(), vtx, wts)
valuesi=valuesi.reshape(Xi.shape[0],Xi.shape[1])
print "interpolation error: ",np.mean(valuesi-np.cos(2*Xi)*np.cos(2*Yi))
print "interpolation uncertainty: ",np.std(valuesi-np.cos(2*Xi)*np.cos(2*Yi))
Run Code Online (Sandbox Code Playgroud)
可以应用图像变换,例如具有 udge 加速的图像映射
您不能使用相同的函数定义,因为每次迭代时新坐标都会改变,但您可以一次性计算三角剖分。
import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np
import time
# Definition of the fast interpolation process. May be the Tirangulation process can be removed !!
def interp_tri(xy):
tri = qhull.Delaunay(xy)
return tri
def interpolate(values, tri,uv,d=2):
simplex = tri.find_simplex(uv)
vertices = np.take(tri.simplices, simplex, axis=0)
temp = np.take(tri.transform, simplex, axis=0)
delta = uv- temp[:, d]
bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
return np.einsum('nj,nj->n', np.take(values, vertices), np.hstack((bary, 1.0 - bary.sum(axis=1, keepdims=True))))
m, n = 101,201
mi, ni = 101,201
[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))
xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,1]=Y.flatten()
xy[:,0]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
# creation of a displacement field
uv[:,1]=0.5*Yi.flatten()+0.4
uv[:,0]=1.5*Xi.flatten()-0.7
values=np.zeros_like(X)
values[50:70,90:150]=100.
#Computed once and for all !
tri = interp_tri(xy)
t0=time.time()
for i in range(0,100):
values_interp_Qhull=interpolate(values.flatten(),tri,uv,2).reshape(Xi.shape[0],Xi.shape[1])
t_q=(time.time()-t0)/100
t0=time.time()
values_interp_griddata=spint.griddata(xy,values.flatten(),uv,fill_value=0).reshape(values.shape[0],values.shape[1])
t_g=time.time()-t0
print "Speed-up:", t_g/t_q
print "Mean error: ",(values_interp_Qhull-values_interp_griddata).mean()
print "Standard deviation: ",(values_interp_Qhull-values_interp_griddata).std()
Run Code Online (Sandbox Code Playgroud)
在我的笔记本电脑上,速度提高了 20 到 40 倍!
希望可以帮助某人