加速scipy griddata用于两个不规则网格之间的多个插值

s_h*_*key 22 python interpolation numpy scipy qhull

我有几个值在同一个不规则网格上定义(x, y, z),我想插入到新网格上(x1, y1, z1).即,我有f(x, y, z), g(x, y, z), h(x, y, z),我想计算f(x1, y1, z1), g(x1, y1, z1), h(x1, y1, z1).

目前我正在使用这个scipy.interpolate.griddata并且效果很好.但是,因为我必须单独执行每个插值并且有很多点,所以它很慢,在计算中有很多重复(即找到哪些点最接近,设置网格等等).

有没有办法加快计算速度并减少重复计算?即沿着定义两个网格的线条,然后更改插值的值?

Jai*_*ime 37

每次拨打电话时都会发生以下事情scipy.interpolate.griddata:

  1. 首先,调用以sp.spatial.qhull.Delaunay对不规则网格坐标进行三角测量.
  2. 然后,对于新网格中的每个点,搜索三角测量以找到它所在的三角形(实际上,在哪个单形中,在3D情况下将在哪个四面体中).
  3. 计算每个新网格点相对于封闭单形的顶点的重心坐标.
  4. 使用重心坐标计算该网格点的插值,并在封闭单形的顶点处计算函数的值.

对于所有插值,前三个步骤是相同的​​,因此如果您可以为每个新网格点存储封闭单形的顶点索引和插值的权重,则可以将计算量减少很多.遗憾的是,直接使用可用的功能并不容易,尽管确实可以:

import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import itertools

def interp_weights(xyz, uvw):
    tri = qhull.Delaunay(xyz)
    simplex = tri.find_simplex(uvw)
    vertices = np.take(tri.simplices, simplex, axis=0)
    temp = np.take(tri.transform, simplex, axis=0)
    delta = uvw - temp[:, d]
    bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
    return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))

def interpolate(values, vtx, wts):
    return np.einsum('nj,nj->n', np.take(values, vtx), wts)
Run Code Online (Sandbox Code Playgroud)

该函数interp_weights执行上面列出的前三个步骤的计算.然后该函数interpolate使用这些计算值非常快速地执行步骤4:

m, n, d = 3.5e4, 3e3, 3
# make sure no new grid point is extrapolated
bounding_cube = np.array(list(itertools.product([0, 1], repeat=d)))
xyz = np.vstack((bounding_cube,
                 np.random.rand(m - len(bounding_cube), d)))
f = np.random.rand(m)
g = np.random.rand(m)
uvw = np.random.rand(n, d)

In [2]: vtx, wts = interp_weights(xyz, uvw)

In [3]: np.allclose(interpolate(f, vtx, wts), spint.griddata(xyz, f, uvw))
Out[3]: True

In [4]: %timeit spint.griddata(xyz, f, uvw)
1 loops, best of 3: 2.81 s per loop

In [5]: %timeit interp_weights(xyz, uvw)
1 loops, best of 3: 2.79 s per loop

In [6]: %timeit interpolate(f, vtx, wts)
10000 loops, best of 3: 66.4 us per loop

In [7]: %timeit interpolate(g, vtx, wts)
10000 loops, best of 3: 67 us per loop
Run Code Online (Sandbox Code Playgroud)

首先,它是一样的griddata,这是好的.其次,设置插值,即计算vtxwts采用与调用大致相同的方式griddata.但第三,您现在几乎可以立即在同一网格上插入不同的值.

griddata这里没有考虑的唯一事情是分配fill_value必须外推的点.您可以通过检查至少一个权重为负数的点来做到这一点,例如:

def interpolate(values, vtx, wts, fill_value=np.nan):
    ret = np.einsum('nj,nj->n', np.take(values, vtx), wts)
    ret[np.any(wts < 0, axis=1)] = fill_value
    return ret
Run Code Online (Sandbox Code Playgroud)

  • 完美,正是我追求的!非常感谢.如果这种功能包含在未来版本的griddata的scipy中,那将是很好的. (2认同)
  • 如何使用三次插值(对于“griddata”来说只是一个关键字)? (2认同)

小智 6

非常感谢 Jaime 的解决方案(即使我真的不明白重心计算是如何完成的......)

在这里,您将找到一个改编自他的 2D 案例的示例:

import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np

def interp_weights(xy, uv,d=2):
    tri = qhull.Delaunay(xy)
    simplex = tri.find_simplex(uv)
    vertices = np.take(tri.simplices, simplex, axis=0)
    temp = np.take(tri.transform, simplex, axis=0)
    delta = uv - temp[:, d]
    bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
    return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))

def interpolate(values, vtx, wts):
    return np.einsum('nj,nj->n', np.take(values, vtx), wts)

m, n = 101,201
mi, ni = 1001,2001

[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))

xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,0]=Y.flatten()
xy[:,1]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
uv[:,0]=Yi.flatten()
uv[:,1]=Xi.flatten()

values=np.cos(2*X)*np.cos(2*Y)

#Computed once and for all !
vtx, wts = interp_weights(xy, uv)
valuesi=interpolate(values.flatten(), vtx, wts)
valuesi=valuesi.reshape(Xi.shape[0],Xi.shape[1])
print "interpolation error: ",np.mean(valuesi-np.cos(2*Xi)*np.cos(2*Yi))  
print "interpolation uncertainty: ",np.std(valuesi-np.cos(2*Xi)*np.cos(2*Yi))  
Run Code Online (Sandbox Code Playgroud)

可以应用图像变换,例如具有 udge 加速的图像映射

您不能使用相同的函数定义,因为每次迭代时新坐标都会改变,但您可以一次性计算三角剖分。

import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np
import time

# Definition of the fast  interpolation process. May be the Tirangulation process can be removed !!
def interp_tri(xy):
    tri = qhull.Delaunay(xy)
    return tri


def interpolate(values, tri,uv,d=2):
    simplex = tri.find_simplex(uv)
    vertices = np.take(tri.simplices, simplex, axis=0)
    temp = np.take(tri.transform, simplex, axis=0)
    delta = uv- temp[:, d]
    bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)  
    return np.einsum('nj,nj->n', np.take(values, vertices),  np.hstack((bary, 1.0 - bary.sum(axis=1, keepdims=True))))

m, n = 101,201
mi, ni = 101,201

[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))

xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,1]=Y.flatten()
xy[:,0]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
# creation of a displacement field
uv[:,1]=0.5*Yi.flatten()+0.4
uv[:,0]=1.5*Xi.flatten()-0.7
values=np.zeros_like(X)
values[50:70,90:150]=100.

#Computed once and for all !
tri = interp_tri(xy)
t0=time.time()
for i in range(0,100):
  values_interp_Qhull=interpolate(values.flatten(),tri,uv,2).reshape(Xi.shape[0],Xi.shape[1])
t_q=(time.time()-t0)/100

t0=time.time()
values_interp_griddata=spint.griddata(xy,values.flatten(),uv,fill_value=0).reshape(values.shape[0],values.shape[1])
t_g=time.time()-t0

print "Speed-up:", t_g/t_q
print "Mean error: ",(values_interp_Qhull-values_interp_griddata).mean()
print "Standard deviation: ",(values_interp_Qhull-values_interp_griddata).std()
Run Code Online (Sandbox Code Playgroud)

在我的笔记本电脑上,速度提高了 20 到 40 倍!

希望可以帮助某人