Geo*_*tas 4 r cluster-analysis machine-learning data-mining
在对我的数据集(名为data.matrix的数据帧)执行聚类分析之后,我在末尾添加了一个名为cluster的新列(第27列),其中包含每个实例所属的群集名称.
我现在想要的是来自每个集群的代表性实例.我试图从群集的质心中找到与欧氏距离最小的实例(并为我的每个群集重复该过程)
这就是我做的.你能想到其他 - 或许更优雅的方式吗?(假设没有空值的数字列).
clusters <- levels(data.matrix$cluster)
cluster_col = c(27)
for (j in 1:length(clusters)) {
# get the subset for cluster j
data = data.matrix[data.matrix$cluster == clusters[j],]
# remove the cluster column
data <- data[,-cluster_col]
# calculate the centroid
cent <- mean(data)
# copy data to data.matrix_cl, attaching a distance column at the end
data.matrix_cl <- cbind(data, dist = apply(data, 1, function(x) {sqrt(sum((x - cent)^2))}))
# get instances with min distance
candidates <- data.matrix_cl[data.matrix_cl$dist == min(data.matrix_cl$dist),]
# print their rownames
print(paste("Candidates for cluster ",j))
print(rownames(candidates))
}
Run Code Online (Sandbox Code Playgroud)
如果距离公式好的话,我现在不会.我认为应该有sqrt(sum((x-cent)^2))或sum(abs(x-cent)).我先假设.第二个想法是,只是打印解决方案并不是一个好主意.所以我先计算,然后打印.第三 - 我建议使用plyr,但我同时给予(有和没有plyr)解决方案.
# Simulated data:
n <- 100
data.matrix <- cbind(
data.frame(matrix(runif(26*n), n, 26)),
cluster=sample(letters[1:6], n, replace=TRUE)
)
cluster_col <- which(names(data.matrix)=="cluster")
# With plyr:
require(plyr)
candidates <- dlply(data.matrix, "cluster", function(data) {
dists <- colSums(laply(data[, -cluster_col], function(x) (x-mean(x))^2))
rownames(data)[dists==min(dists)]
})
l_ply(names(candidates), function(c_name, c_list=candidates[[c_name]]) {
print(paste("Candidates for cluster ",c_name))
print(c_list)
})
# without plyr
candidates <- tapply(
1:nrow(data.matrix),
data.matrix$cluster,
function(id, data=data.matrix[id, ]) {
dists <- rowSums(sapply(data[, -cluster_col], function(x) (x-mean(x))^2))
rownames(data)[dists==min(dists)]
}
)
invisible(lapply(names(candidates), function(c_name, c_list=candidates[[c_name]]) {
print(paste("Candidates for cluster ",c_name))
print(c_list)
}))
Run Code Online (Sandbox Code Playgroud)