在单个图像中检测多个图像

Dan*_*har 32 java matlab image image-processing

我需要帮助来识别边框并将图像与原始图像进行比较.我需要指导如何通过处理或matlab或任何初学者来实现这一目标.例如,看下面的图像.

原始图片:

在此输入图像描述

多重图像: 更大的图像

Amr*_*mro 24

你展示的"多重图像"很容易使用简单的图像处理来处理,不需要模板匹配 :)

% read the second image
img2 = imread('http://i.stack.imgur.com/zyHuj.jpg');
img2 = im2double(rgb2gray(img2));

% detect coca-cola logos
bw = im2bw(img2);                                       % Otsu's thresholding
bw = imfill(~bw, 'holes');                              % fill holes
stats = regionprops(bw, {'Centroid', 'BoundingBox'});   % connected components

% show centers and bounding boxes of each connected component
centers = vertcat(stats.Centroid);
imshow(img2), hold on
plot(centers(:,1), centers(:,2), 'LineStyle','none', ...
    'Marker','x', 'MarkerSize',20, 'Color','r', 'LineWidth',3)
for i=1:numel(stats)
    rectangle('Position',stats(i).BoundingBox, ...
        'EdgeColor','g', 'LineWidth',3)
end
hold off
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


len*_*310 22

您可以使用相关方法来定位多个图像:

file1='http://i.stack.imgur.com/1KyJA.jpg';
file2='http://i.stack.imgur.com/zyHuj.jpg';
It = imread(file1);
Ii = imread(file2);
It=rgb2gray(It);
Ii=rgb2gray(Ii);
It=double(It);  % template
Ii=double(Ii);  % image

Ii_mean = conv2(Ii,ones(size(It))./numel(It),'same');
It_mean = mean(It(:));
corr_1 = conv2(Ii,rot90(It-It_mean,2),'same')./numel(It);
corr_2 = Ii_mean.*sum(It(:)-It_mean);
conv_std = sqrt(conv2(Ii.^2,ones(size(It))./numel(It),'same')-Ii_mean.^2);
It_std = std(It(:));
S = (corr_1-corr_2)./(conv_std.*It_std);

imagesc(abs(S))
Run Code Online (Sandbox Code Playgroud)

结果将为您提供具有最大值的位置:

在此输入图像描述

获取最大值的坐标,并将模板质心放在同一位置,检查模板与匹配图像之间的差异.

我不确定你是什么意思"识别边框",但你总是可以用canny探测器提取边缘:

bw=edge(It);
bw=imfill(bw,'holes');
figure,imshow(bw)
Run Code Online (Sandbox Code Playgroud)


Gab*_*njo 11

下面介绍使用Marvin图像处理框架在Java中实现的解决方案.

做法:

  1. "原始图像"中加载,分割和缩放(50x50)徽标.
  2. "多个图像"中加载,分割和缩放(50x50)每个徽标
  3. 对于"多个图像"中的每个徽标,请与"原始图像"中的徽标进行比较.如果它几乎相同,则绘制一个矩形以突出显示.

比较方法(内部diff插件):

对于两个徽标中的每个像素,比较每个颜色分量.如果一个颜色分量的差异高于给定阈值,则考虑该两个徽标的像素不同.计算不同像素的总数.如果两个徽标的许多不同像素高于另一个阈值,请将它们视为不同.重要提示:此方法对旋转和透视变化非常敏感.

由于您的样本("多图")只有古柯标识,我冒昧地包含另一个标识以断言算法.

多重图像2

在此输入图像描述

产量

在此输入图像描述

在另一个测试中,我还包括另外两个类似的古柯标志.更改阈值参数,您可以指定是否需要完全相同的徽标或接受其变体.在下面的结果中,参数设置为接受徽标变体.

多重图像3

在此输入图像描述

产量

在此输入图像描述

源代码

public class Logos {

private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
private MarvinImagePlugin scale = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.transform.scale");
private MarvinImagePlugin diff = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.difference.differenceColor");

public Logos(){

    // 1. Load, segment and scale the object to be found
    MarvinImage target = segmentTarget();

    // 2. Load the image with multiple objects
    MarvinImage original = MarvinImageIO.loadImage("./res/logos/logos.jpg");
    MarvinImage image = original.clone();

    // 3. Segment
    threshold.process(image, image);
    MarvinImage image2 = new MarvinImage(image.getWidth(), image.getHeight());
    fill(image, image2);
    MarvinImageIO.saveImage(image2, "./res/logos/logos_fill.jpg");

    // 4. Filter segments by its their masses
    LinkedHashSet<Integer> objects = filterByMass(image2, 10000);
    int[][] rects = getRects(objects, image2, original);
    MarvinImage[] subimages = getSubimages(rects, original);

    // 5. Compare the target object with each object in the other image
    compare(target, subimages, original, rects);
    MarvinImageIO.saveImage(original, "./res/logos/logos_out.jpg");
}

private void compare(MarvinImage target, MarvinImage[] subimages, MarvinImage original, int[][] rects){
    MarvinAttributes attrOut = new MarvinAttributes();
    for(int i=0; i<subimages.length; i++){
        diff.setAttribute("comparisonImage", subimages[i]);
        diff.setAttribute("colorRange", 30);
        diff.process(target, null, attrOut);
        if((Integer)attrOut.get("total") < (50*50)*0.6){
            original.drawRect(rects[i][0], rects[i][6], rects[i][7], rects[i][8], 6, Color.green);
        }
    }
}

private MarvinImage segmentTarget(){
    MarvinImage original = MarvinImageIO.loadImage("./res/logos/target.jpg");
    MarvinImage target = original.clone();
    threshold.process(target, target);
    MarvinImage image2 = new MarvinImage(target.getWidth(), target.getHeight());
    fill(target, image2);
    LinkedHashSet<Integer> objects = filterByMass(image2, 10000);
    int[][] rects = getRects(objects, image2, target);
    MarvinImage[] subimages = getSubimages(rects, original);
    return subimages[0];
}



private int[][] getRects(LinkedHashSet<Integer> objects, MarvinImage mask, MarvinImage original){
    List<int[]> ret = new ArrayList<int[]>();
    for(Integer color:objects){
        ret.add(getObjectRect(mask, color));
    }
    return ret.toArray(new int[0][0]);
}

private MarvinImage[] getSubimages(int[][] rects, MarvinImage original){
    List<MarvinImage> ret = new ArrayList<MarvinImage>();
    for(int[] r:rects){
        ret.add(getSubimage(r, original));
    }
    return ret.toArray(new MarvinImage[0]);
}

private MarvinImage getSubimage(int rect[], MarvinImage original){
    MarvinImage img = original.subimage(rect[0], rect[1], rect[2], rect[3]);
    MarvinImage ret = new MarvinImage(50,50);
    scale.setAttribute("newWidth", 50);
    scale.setAttribute("newHeight", 50);
    scale.process(img, ret);
    return ret;
}

private void fill(MarvinImage imageIn, MarvinImage imageOut){
    boolean found;
    int color= 0xFFFF0000;

    while(true){
        found=false;

        Outerloop:
        for(int y=0; y<imageIn.getHeight(); y++){
            for(int x=0; x<imageIn.getWidth(); x++){
                if(imageOut.getIntColor(x,y) == 0 && imageIn.getIntColor(x, y) != 0xFFFFFFFF){
                    fill.setAttribute("x", x);
                    fill.setAttribute("y", y);
                    fill.setAttribute("color", color);
                    fill.setAttribute("threshold", 120);
                    fill.process(imageIn, imageOut);
                    color = newColor(color);

                    found = true;
                    break Outerloop;
                }
            }
        }

        if(!found){
            break;
        }
    }
}

private LinkedHashSet<Integer> filterByMass(MarvinImage image, int mass){
    boolean found;
    HashSet<Integer> analysed = new HashSet<Integer>();
    LinkedHashSet<Integer> ret = new LinkedHashSet<Integer>();

    while(true){
        found=false;

        outerLoop:
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                int color = image.getIntColor(x,y); 
                if(color != 0){
                    if(!analysed.contains(color)){
                        if(getMass(image, color) >= mass){
                            ret.add(color); 
                        }
                        analysed.add(color);
                        found = true;
                        break outerLoop;
                    }
                }
            }
        }

        if(!found){
            break;
        }
    }
    return ret;
}

private int getMass(MarvinImage image, int color){
    int total=0;
    for(int y=0; y<image.getHeight(); y++){
        for(int x=0; x<image.getWidth(); x++){
            if(image.getIntColor(x, y) == color){
                total++;
            }
        }
    }
    return total;
}

private int[] getObjectRect(MarvinImage mask, int color){
    int x1=-1;
    int x2=-1;
    int y1=-1;
    int y2=-1;

    for(int y=0; y<mask.getHeight(); y++){
        for(int x=0; x<mask.getWidth(); x++){
            if(mask.getIntColor(x, y) == color){

                if(x1 == -1 || x < x1){
                    x1 = x;
                }
                if(x2 == -1 || x > x2){
                    x2 = x;
                }
                if(y1 == -1 || y < y1){
                    y1 = y;
                }
                if(y2 == -1 || y > y2){
                    y2 = y;
                }
            }
        }
    }

    return new int[]{x1, y1, (x2-x1), (y2-y1)};
}

private int newColor(int color){
    int red = (color & 0x00FF0000) >> 16;
    int green = (color & 0x0000FF00) >> 8;
    int blue = (color & 0x000000FF);

    if(red <= green && red <= blue){
        red+=5;
    }
    else if(green <= red && green <= blue){
        green+=5;
    }
    else{
        blue+=5;
    }

    return 0xFF000000 + (red << 16) + (green << 8) + blue;
}

public static void main(String[] args) {
    new Logos();
}   
}
Run Code Online (Sandbox Code Playgroud)


Cap*_*ode 9

您可以使用以下normxcorr2函数简化@ lennon310提出的过程:

file1='http://i.stack.imgur.com/1KyJA.jpg';
file2='http://i.stack.imgur.com/zyHuj.jpg';
It = imread(file1);
Ii = imread(file2);
It=rgb2gray(It);
Ii=rgb2gray(Ii);
It=double(It);  % template
Ii=double(Ii);  % image

c=normxcorr2(It, Ii);
imagesc(c); 
Run Code Online (Sandbox Code Playgroud)