SmC*_*lar 38 python locking multiprocessing python-multiprocessing
多处理是python中一个强大的工具,我想更深入地理解它.我想知道何时使用常规 锁和队列以及何时使用多处理管理器在所有进程之间共享这些.
我提出了以下测试场景,其中包含四种不同的多处理条件:
使用池和NO管理器
使用池和管理器
使用单个流程和NO Manager
使用单个进程和Manager
所有条件都执行作业功能the_job.the_job由一些由锁固定的印刷组成.此外,函数的输入只是放入队列(以查看它是否可以从队列中恢复).该输入是一个简单的索引idx从range(10)在称为主脚本创建start_scenario(在底部示出).
def the_job(args):
"""The job for multiprocessing.
Prints some stuff secured by a lock and
finally puts the input into a queue.
"""
idx = args[0]
lock = args[1]
queue=args[2]
lock.acquire()
print 'I'
print 'was '
print 'here '
print '!!!!'
print '1111'
print 'einhundertelfzigelf\n'
who= ' By run %d \n' % idx
print who
lock.release()
queue.put(idx)
Run Code Online (Sandbox Code Playgroud)
条件的成功定义为完全从队列中调用输入,请参见read_queue底部的函数.
条件1和2是相当不言自明的.条件1涉及创建锁和队列,并将这些传递给进程池:
def scenario_1_pool_no_manager(jobfunc, args, ncores):
"""Runs a pool of processes WITHOUT a Manager for the lock and queue.
FAILS!
"""
mypool = mp.Pool(ncores)
lock = mp.Lock()
queue = mp.Queue()
iterator = make_iterator(args, lock, queue)
mypool.imap(jobfunc, iterator)
mypool.close()
mypool.join()
return read_queue(queue)
Run Code Online (Sandbox Code Playgroud)
(帮助函数make_iterator在本文的底部给出.)条件1失败RuntimeError: Lock objects should only be shared between processes through inheritance.
条件2非常相似,但现在锁和队列在经理的监督下:
def scenario_2_pool_manager(jobfunc, args, ncores):
"""Runs a pool of processes WITH a Manager for the lock and queue.
SUCCESSFUL!
"""
mypool = mp.Pool(ncores)
lock = mp.Manager().Lock()
queue = mp.Manager().Queue()
iterator = make_iterator(args, lock, queue)
mypool.imap(jobfunc, iterator)
mypool.close()
mypool.join()
return read_queue(queue)
Run Code Online (Sandbox Code Playgroud)
在条件3中,手动启动新进程,并在没有管理器的情况下创建锁和队列:
def scenario_3_single_processes_no_manager(jobfunc, args, ncores):
"""Runs an individual process for every task WITHOUT a Manager,
SUCCESSFUL!
"""
lock = mp.Lock()
queue = mp.Queue()
iterator = make_iterator(args, lock, queue)
do_job_single_processes(jobfunc, iterator, ncores)
return read_queue(queue)
Run Code Online (Sandbox Code Playgroud)
条件4类似但现在再次使用经理:
def scenario_4_single_processes_manager(jobfunc, args, ncores):
"""Runs an individual process for every task WITH a Manager,
SUCCESSFUL!
"""
lock = mp.Manager().Lock()
queue = mp.Manager().Queue()
iterator = make_iterator(args, lock, queue)
do_job_single_processes(jobfunc, iterator, ncores)
return read_queue(queue)
Run Code Online (Sandbox Code Playgroud)
在这两个条件中 - 3和4 - 我为10个任务中的每个任务启动一个新流程,the_job其中最多ncores进程同时运行.这是通过以下辅助函数实现的:
def do_job_single_processes(jobfunc, iterator, ncores):
"""Runs a job function by starting individual processes for every task.
At most `ncores` processes operate at the same time
:param jobfunc: Job to do
:param iterator:
Iterator over different parameter settings,
contains a lock and a queue
:param ncores:
Number of processes operating at the same time
"""
keep_running=True
process_dict = {} # Dict containing all subprocees
while len(process_dict)>0 or keep_running:
terminated_procs_pids = []
# First check if some processes did finish their job
for pid, proc in process_dict.iteritems():
# Remember the terminated processes
if not proc.is_alive():
terminated_procs_pids.append(pid)
# And delete these from the process dict
for terminated_proc in terminated_procs_pids:
process_dict.pop(terminated_proc)
# If we have less active processes than ncores and there is still
# a job to do, add another process
if len(process_dict) < ncores and keep_running:
try:
task = iterator.next()
proc = mp.Process(target=jobfunc,
args=(task,))
proc.start()
process_dict[proc.pid]=proc
except StopIteration:
# All tasks have been started
keep_running=False
time.sleep(0.1)
Run Code Online (Sandbox Code Playgroud)
只有条件1失败(RuntimeError: Lock objects should only be shared between processes through inheritance)而其他3个条件成功.我试图围绕这个结果.
为什么池需要在所有进程之间共享锁和队列,但条件3中的各个进程不需要?
我所知道的是,对于池条件(1和2),来自迭代器的所有数据都通过酸洗传递,而在单个进程条件(3和4)中,来自迭代器的所有数据都是通过主进程的继承传递的(我是使用Linux).我想直到从子进程内部更改内存,访问父进程使用的相同内存(写时复制).但是只要一个人说lock.acquire(),这应该改变,并且子进程确实使用放在内存中其他位置的不同锁,不是吗?一个子进程如何知道兄弟已经激活了一个不通过管理员共享的锁?
最后,有点相关的是我的问题,有多少不同的条件3和4.两者都有单独的流程,但它们在经理的使用上有所不同.两者都被认为是有效的代码吗?或者,如果实际上不需要经理,应该避免使用经理吗?
对于那些只想复制并粘贴所有代码以执行代码的人来说,这里是完整的脚本:
__author__ = 'Me and myself'
import multiprocessing as mp
import time
def the_job(args):
"""The job for multiprocessing.
Prints some stuff secured by a lock and
finally puts the input into a queue.
"""
idx = args[0]
lock = args[1]
queue=args[2]
lock.acquire()
print 'I'
print 'was '
print 'here '
print '!!!!'
print '1111'
print 'einhundertelfzigelf\n'
who= ' By run %d \n' % idx
print who
lock.release()
queue.put(idx)
def read_queue(queue):
"""Turns a qeue into a normal python list."""
results = []
while not queue.empty():
result = queue.get()
results.append(result)
return results
def make_iterator(args, lock, queue):
"""Makes an iterator over args and passes the lock an queue to each element."""
return ((arg, lock, queue) for arg in args)
def start_scenario(scenario_number = 1):
"""Starts one of four multiprocessing scenarios.
:param scenario_number: Index of scenario, 1 to 4
"""
args = range(10)
ncores = 3
if scenario_number==1:
result = scenario_1_pool_no_manager(the_job, args, ncores)
elif scenario_number==2:
result = scenario_2_pool_manager(the_job, args, ncores)
elif scenario_number==3:
result = scenario_3_single_processes_no_manager(the_job, args, ncores)
elif scenario_number==4:
result = scenario_4_single_processes_manager(the_job, args, ncores)
if result != args:
print 'Scenario %d fails: %s != %s' % (scenario_number, args, result)
else:
print 'Scenario %d successful!' % scenario_number
def scenario_1_pool_no_manager(jobfunc, args, ncores):
"""Runs a pool of processes WITHOUT a Manager for the lock and queue.
FAILS!
"""
mypool = mp.Pool(ncores)
lock = mp.Lock()
queue = mp.Queue()
iterator = make_iterator(args, lock, queue)
mypool.map(jobfunc, iterator)
mypool.close()
mypool.join()
return read_queue(queue)
def scenario_2_pool_manager(jobfunc, args, ncores):
"""Runs a pool of processes WITH a Manager for the lock and queue.
SUCCESSFUL!
"""
mypool = mp.Pool(ncores)
lock = mp.Manager().Lock()
queue = mp.Manager().Queue()
iterator = make_iterator(args, lock, queue)
mypool.map(jobfunc, iterator)
mypool.close()
mypool.join()
return read_queue(queue)
def scenario_3_single_processes_no_manager(jobfunc, args, ncores):
"""Runs an individual process for every task WITHOUT a Manager,
SUCCESSFUL!
"""
lock = mp.Lock()
queue = mp.Queue()
iterator = make_iterator(args, lock, queue)
do_job_single_processes(jobfunc, iterator, ncores)
return read_queue(queue)
def scenario_4_single_processes_manager(jobfunc, args, ncores):
"""Runs an individual process for every task WITH a Manager,
SUCCESSFUL!
"""
lock = mp.Manager().Lock()
queue = mp.Manager().Queue()
iterator = make_iterator(args, lock, queue)
do_job_single_processes(jobfunc, iterator, ncores)
return read_queue(queue)
def do_job_single_processes(jobfunc, iterator, ncores):
"""Runs a job function by starting individual processes for every task.
At most `ncores` processes operate at the same time
:param jobfunc: Job to do
:param iterator:
Iterator over different parameter settings,
contains a lock and a queue
:param ncores:
Number of processes operating at the same time
"""
keep_running=True
process_dict = {} # Dict containing all subprocees
while len(process_dict)>0 or keep_running:
terminated_procs_pids = []
# First check if some processes did finish their job
for pid, proc in process_dict.iteritems():
# Remember the terminated processes
if not proc.is_alive():
terminated_procs_pids.append(pid)
# And delete these from the process dict
for terminated_proc in terminated_procs_pids:
process_dict.pop(terminated_proc)
# If we have less active processes than ncores and there is still
# a job to do, add another process
if len(process_dict) < ncores and keep_running:
try:
task = iterator.next()
proc = mp.Process(target=jobfunc,
args=(task,))
proc.start()
process_dict[proc.pid]=proc
except StopIteration:
# All tasks have been started
keep_running=False
time.sleep(0.1)
def main():
"""Runs 1 out of 4 different multiprocessing scenarios"""
start_scenario(1)
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
dan*_*ano 32
multiprocessing.Lock使用OS提供的Semaphore对象实现.在Linux上,子进程从父进程继承了Semaphore的句柄os.fork.这不是信号量的副本; 它实际上是继承父项所具有的相同句柄,与继承文件描述符的方式相同.另一方面,Windows不支持os.fork,所以它必须腌制Lock.它通过multiprocessing.Lock使用Windows DuplicateHandleAPI 创建对象内部使用的Windows信号量的重复句柄来实现此目的,该API声明:
重复句柄引用与原始句柄相同的对象.因此,对象的任何更改都通过两个句柄反映出来
该DuplicateHandleAPI允许你给复制的句柄子进程的所有权,这样孩子进程可以取储存之后使用它.通过创建子项拥有的重复句柄,您可以有效地"共享"锁定对象.
这是信号量对象 multiprocessing/synchronize.py
class SemLock(object):
def __init__(self, kind, value, maxvalue):
sl = self._semlock = _multiprocessing.SemLock(kind, value, maxvalue)
debug('created semlock with handle %s' % sl.handle)
self._make_methods()
if sys.platform != 'win32':
def _after_fork(obj):
obj._semlock._after_fork()
register_after_fork(self, _after_fork)
def _make_methods(self):
self.acquire = self._semlock.acquire
self.release = self._semlock.release
self.__enter__ = self._semlock.__enter__
self.__exit__ = self._semlock.__exit__
def __getstate__(self): # This is called when you try to pickle the `Lock`.
assert_spawning(self)
sl = self._semlock
return (Popen.duplicate_for_child(sl.handle), sl.kind, sl.maxvalue)
def __setstate__(self, state): # This is called when unpickling a `Lock`
self._semlock = _multiprocessing.SemLock._rebuild(*state)
debug('recreated blocker with handle %r' % state[0])
self._make_methods()
Run Code Online (Sandbox Code Playgroud)
注意assert_spawning调用in __getstate__,在pickle对象时调用它.这是如何实现的:
#
# Check that the current thread is spawning a child process
#
def assert_spawning(self):
if not Popen.thread_is_spawning():
raise RuntimeError(
'%s objects should only be shared between processes'
' through inheritance' % type(self).__name__
)
Run Code Online (Sandbox Code Playgroud)
该函数是Lock通过调用确保你"继承"的函数thread_is_spawning.在Linux上,该方法只返回False:
@staticmethod
def thread_is_spawning():
return False
Run Code Online (Sandbox Code Playgroud)
这是因为Linux不需要pickle来继承Lock,所以如果__getstate__实际上是在Linux上调用,我们就不能继承.在Windows上,还有更多内容:
def dump(obj, file, protocol=None):
ForkingPickler(file, protocol).dump(obj)
class Popen(object):
'''
Start a subprocess to run the code of a process object
'''
_tls = thread._local()
def __init__(self, process_obj):
...
# send information to child
prep_data = get_preparation_data(process_obj._name)
to_child = os.fdopen(wfd, 'wb')
Popen._tls.process_handle = int(hp)
try:
dump(prep_data, to_child, HIGHEST_PROTOCOL)
dump(process_obj, to_child, HIGHEST_PROTOCOL)
finally:
del Popen._tls.process_handle
to_child.close()
@staticmethod
def thread_is_spawning():
return getattr(Popen._tls, 'process_handle', None) is not None
Run Code Online (Sandbox Code Playgroud)
这里,如果对象具有属性,则thread_is_spawning返回.我们可以看到创建了属性,然后我们想要继承的数据从父级传递给子级,然后删除属性.所以只会在期间.根据这个python-ideas邮件列表线程,这实际上是一个人为限制,用于模拟与Linux 相同的行为.Windows实际上可以随时支持传递,因为可以随时运行.TruePopen._tlsprocess_handleprocess_handle__init__dumpthread_is_spawningTrue__init__os.forkLockDuplicateHandle
所有上述内容都适用于该Queue对象,因为它在Lock内部使用.
我会说继承Lock对象比使用a更好Manager.Lock(),因为当你使用a时Manager.Lock,你所做的每一次调用Lock必须通过IPC发送到Manager进程,这比使用Lock在调用中的共享要慢得多处理.但是,这两种方法都是完全有效的.
最后,可以使用/ keyword参数将a传递给a Lock的所有成员Pool而不使用a :Managerinitializerinitargs
lock = None
def initialize_lock(l):
global lock
lock = l
def scenario_1_pool_no_manager(jobfunc, args, ncores):
"""Runs a pool of processes WITHOUT a Manager for the lock and queue.
"""
lock = mp.Lock()
mypool = mp.Pool(ncores, initializer=initialize_lock, initargs=(lock,))
queue = mp.Queue()
iterator = make_iterator(args, queue)
mypool.imap(jobfunc, iterator) # Don't pass lock. It has to be used as a global in the child. (This means `jobfunc` would need to be re-written slightly.
mypool.close()
mypool.join()
return read_queue(queue)
Run Code Online (Sandbox Code Playgroud)
这是有效的,因为传递的参数传递给在其中运行的对象initargs的__init__方法,因此它们最终被继承而不是被pickle.ProcessPool