use*_*011 3 python while-loop numerical-methods
我警告你,这可能令人困惑,我写的代码更多的是思维导图而不是完成代码.
我正在尝试使用Newton-Raphson方法来求解方程.我无法弄清楚的是如何写这个

Python中的等式,用于计算最后一次近似(xn)的下一个近似值(xn + 1).我必须使用循环,越来越接近真实的答案,并且当近似值之间的变化小于变量h时,循环应该终止.
当近似值不再变化时,如何终止循环?
def derivative(f, x, h):
deriv = (1.0/(2*h))*(f(x+h)-f(x-h))
return deriv
Run Code Online (Sandbox Code Playgroud)
def solve(f, x0, h):
xn = x0
prev = 0
while ( approx - prev > h):
xn = xn - (f(xn))/derivative(f, xn, h)
return xn
Run Code Online (Sandbox Code Playgroud)以下是NR解算器的实现,扩展了您上面写的内容(完整,有效).我添加了一些额外的行来显示正在发生的事情......
def derivative(f, x, h):
return (f(x+h) - f(x-h)) / (2.0*h) # might want to return a small non-zero if ==0
def quadratic(x):
return 2*x*x-5*x+1 # just a function to show it works
def solve(f, x0, h):
lastX = x0
nextX = lastX + 10* h # "different than lastX so loop starts OK
while (abs(lastX - nextX) > h): # this is how you terminate the loop - note use of abs()
newY = f(nextX) # just for debug... see what happens
print "f(", nextX, ") = ", newY # print out progress... again just debug
lastX = nextX
nextX = lastX - newY / derivative(f, lastX, h) # update estimate using N-R
return nextX
xFound = solve(quadratic, 5, 0.01) # call the solver
print "solution: x = ", xFound # print the result
Run Code Online (Sandbox Code Playgroud)
输出:
f( 5.1 ) = 27.52
f( 3.31298701299 ) = 6.38683083151
f( 2.53900845771 ) = 1.19808560807
f( 2.30664271935 ) = 0.107987672721
f( 2.28109300639 ) = 0.00130557566462
solution: x = 2.28077645501
Run Code Online (Sandbox Code Playgroud)
编辑-你也可以检查的价值newY和停止时,它是"足够零关闭" -但通常你这个打算,直到变化x是<=h(你可以争论的价值=符号的数值方法-我喜欢更加强调<自己,认为再多一次迭代不会受到伤害.)