Rom*_*man 290 python indexing dataframe pandas
我有一个数据框,我从中删除了一些行.结果,我得到一个数据框,其中索引是这样的:[1,5,6,10,11]我想将其重置为[0,1,2,3,4].我该怎么做?
以下似乎有效:
df = df.reset_index()
del df['index']
Run Code Online (Sandbox Code Playgroud)
以下不起作用:
df = df.reindex()
Run Code Online (Sandbox Code Playgroud)
mkl*_*kln 585
reset_index()是你在找什么.如果您不希望将其另存为列,请执行以下操作:
df = df.reset_index(drop=True)
Run Code Online (Sandbox Code Playgroud)
jez*_*ael 42
另一种解决方案是分配RangeIndex或range:
df.index = pd.RangeIndex(len(df.index))
df.index = range(len(df.index))
Run Code Online (Sandbox Code Playgroud)
它更快:
df = pd.DataFrame({'a':[8,7], 'c':[2,4]}, index=[7,8])
df = pd.concat([df]*10000)
print (df.head())
In [298]: %timeit df1 = df.reset_index(drop=True)
The slowest run took 7.26 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 105 µs per loop
In [299]: %timeit df.index = pd.RangeIndex(len(df.index))
The slowest run took 15.05 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 7.84 µs per loop
In [300]: %timeit df.index = range(len(df.index))
The slowest run took 7.10 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 14.2 µs per loop
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
400834 次 |
| 最近记录: |