use*_*473 3 python optimization
假设有一个函数costly_function_a(x):
x; 和在这些条件下,x我们可以将结果存储在临时变量中,然后使用该变量进行这些计算,而不是连续两次调用函数.
现在假设有一些功能(f(x),g(x)并h(x)调用在下面的示例)costly_function_a(x),并且其中的一些功能可以调用彼此(在下面的例子中,g(x)与h(x)两个呼叫f(x)).在这种情况下,使用在重复调用以上仍结果提到的简单的方法costly_function_a(x)用相同的x(见OkayVersion下文).我确实找到了一种最小化呼叫次数的方法,但它"丑陋"(见FastVersion下文).有没有更好的方法来做到这一点?
#Dummy functions representing extremely slow code.
#The goal is to call these costly functions as rarely as possible.
def costly_function_a(x):
print("costly_function_a has been called.")
return x #Dummy operation.
def costly_function_b(x):
print("costly_function_b has been called.")
return 5.*x #Dummy operation.
#Simplest (but slowest) implementation.
class SlowVersion:
def __init__(self,a,b):
self.a = a
self.b = b
def f(self,x): #Dummy operation.
return self.a(x) + 2.*self.a(x)**2
def g(self,x): #Dummy operation.
return self.f(x) + 0.7*self.a(x) + .1*x
def h(self,x): #Dummy operation.
return self.f(x) + 0.5*self.a(x) + self.b(x) + 3.*self.b(x)**2
#Equivalent to SlowVersion, but call the costly functions less often.
class OkayVersion:
def __init__(self,a,b):
self.a = a
self.b = b
def f(self,x): #Same result as SlowVersion.f(x)
a_at_x = self.a(x)
return a_at_x + 2.*a_at_x**2
def g(self,x): #Same result as SlowVersion.g(x)
return self.f(x) + 0.7*self.a(x) + .1*x
def h(self,x): #Same result as SlowVersion.h(x)
a_at_x = self.a(x)
b_at_x = self.b(x)
return self.f(x) + 0.5*a_at_x + b_at_x + 3.*b_at_x**2
#Equivalent to SlowVersion, but calls the costly functions even less often.
#Is this the simplest way to do it? I am aware that this code is highly
#redundant. One could simplify it by defining some factory functions...
class FastVersion:
def __init__(self,a,b):
self.a = a
self.b = b
def f(self, x, _at_x=None): #Same result as SlowVersion.f(x)
if _at_x is None:
_at_x = dict()
if 'a' not in _at_x:
_at_x['a'] = self.a(x)
return _at_x['a'] + 2.*_at_x['a']**2
def g(self, x, _at_x=None): #Same result as SlowVersion.g(x)
if _at_x is None:
_at_x = dict()
if 'a' not in _at_x:
_at_x['a'] = self.a(x)
return self.f(x,_at_x) + 0.7*_at_x['a'] + .1*x
def h(self,x,_at_x=None): #Same result as SlowVersion.h(x)
if _at_x is None:
_at_x = dict()
if 'a' not in _at_x:
_at_x['a'] = self.a(x)
if 'b' not in _at_x:
_at_x['b'] = self.b(x)
return self.f(x,_at_x) + 0.5*_at_x['a'] + _at_x['b'] + 3.*_at_x['b']**2
if __name__ == '__main__':
slow = SlowVersion(costly_function_a,costly_function_b)
print("Using slow version.")
print("f(2.) = " + str(slow.f(2.)))
print("g(2.) = " + str(slow.g(2.)))
print("h(2.) = " + str(slow.h(2.)) + "\n")
okay = OkayVersion(costly_function_a,costly_function_b)
print("Using okay version.")
print("f(2.) = " + str(okay.f(2.)))
print("g(2.) = " + str(okay.g(2.)))
print("h(2.) = " + str(okay.h(2.)) + "\n")
fast = FastVersion(costly_function_a,costly_function_b)
print("Using fast version 'casually'.")
print("f(2.) = " + str(fast.f(2.)))
print("g(2.) = " + str(fast.g(2.)))
print("h(2.) = " + str(fast.h(2.)) + "\n")
print("Using fast version 'optimally'.")
_at_x = dict()
print("f(2.) = " + str(fast.f(2.,_at_x)))
print("g(2.) = " + str(fast.g(2.,_at_x)))
print("h(2.) = " + str(fast.h(2.,_at_x)))
#Of course, one must "clean up" _at_x before using a different x...
Run Code Online (Sandbox Code Playgroud)
此代码的输出是:
Using slow version.
costly_function_a has been called.
costly_function_a has been called.
f(2.) = 10.0
costly_function_a has been called.
costly_function_a has been called.
costly_function_a has been called.
g(2.) = 11.6
costly_function_a has been called.
costly_function_a has been called.
costly_function_a has been called.
costly_function_b has been called.
costly_function_b has been called.
h(2.) = 321.0
Using okay version.
costly_function_a has been called.
f(2.) = 10.0
costly_function_a has been called.
costly_function_a has been called.
g(2.) = 11.6
costly_function_a has been called.
costly_function_b has been called.
costly_function_a has been called.
h(2.) = 321.0
Using fast version 'casually'.
costly_function_a has been called.
f(2.) = 10.0
costly_function_a has been called.
g(2.) = 11.6
costly_function_a has been called.
costly_function_b has been called.
h(2.) = 321.0
Using fast version 'optimally'.
costly_function_a has been called.
f(2.) = 10.0
g(2.) = 11.6
costly_function_b has been called.
h(2.) = 321.0
Run Code Online (Sandbox Code Playgroud)
请注意,我不想"存储" x过去使用的所有值的结果(因为这将需要太多内存).此外,我不希望有一个函数返回表单的元组,(f,g,h)因为有些情况我只想要f(所以不需要评估costly_function_b).
Mar*_*ers 11
您正在寻找的是LRU缓存; 只缓存最近使用的项目,限制内存使用以平衡调用成本和内存要求.
由于您使用不同的值调用昂贵的函数x,x因此缓存最多多个返回值(每个唯一值),并在缓存已满时丢弃最近最少使用的缓存结果.
从Python 3.2开始,标准库附带了一个装饰器实现@functools.lru_cache():
from functools import lru_cache
@lru_cache(16) # cache 16 different `x` return values
def costly_function_a(x):
print("costly_function_a has been called.")
return x #Dummy operation.
@lru_cache(32) # cache 32 different `x` return values
def costly_function_b(x):
print("costly_function_b has been called.")
return 5.*x #Dummy operation.
Run Code Online (Sandbox Code Playgroud)
对于早期版本,可以使用backport,或者选择可以处理可在PyPI上使用的LRU高速缓存的其他可用库之一.
如果您只需要缓存一个最近的项目,请创建自己的装饰器:
from functools import wraps
def cache_most_recent(func):
cache = [None, None]
@wraps(func)
def wrapper(*args, **kw):
if (args, kw) == cache[0]:
return cache[1]
cache[0] = args, kw
cache[1] = func(*args, **kw)
return cache[1]
return wrapper
@cache_most_recent
def costly_function_a(x):
print("costly_function_a has been called.")
return x #Dummy operation.
@cache_most_recent
def costly_function_b(x):
print("costly_function_b has been called.")
return 5.*x #Dummy operation.
Run Code Online (Sandbox Code Playgroud)
这个更简单的装饰器比更具特色的装饰器具有更少的开销functools.lru_cache().
| 归档时间: |
|
| 查看次数: |
268 次 |
| 最近记录: |