Django haystack EdgeNgramField给出了与弹性搜索不同的结果

tuf*_*fla 13 python django django-haystack elasticsearch

我目前正在运行带有弹性搜索后端的haystack,现在我正在为城市名称构建自动完成功能.问题是SearchQuerySet给了我不同的结果,从我的角度来看是错误的,而不是直接在elasticsearch中执行的相同查询,这对我来说是预期的结果.

我正在使用:Django 1.5.4,django-haystack 2.1.0,pyelasticsearch 0.6.1,elasticsearch 0.90.3

使用以下示例数据:

  • 中场
  • 米德兰市
  • 中途
  • 次要
  • 明特恩
  • 迈阿密滩

使用其中之一

SearchQuerySet().models(Geoname).filter(name_auto='mid')
or
SearchQuerySet().models(Geoname).autocomplete(name_auto='mid')
Run Code Online (Sandbox Code Playgroud)

结果总是返回所有6个名称,包括Min*和Mia*...但是,查询elasticsearch会直接返回正确的数据:

"query": {
    "filtered" : {
        "query" : {
            "match_all": {}
        },
        "filter" : {
             "term": {"name_auto": "mid"}
        }
    }
}

{
   "took": 1,
   "timed_out": false,
   "_shards": {
      "total": 5,
      "successful": 5,
      "failed": 0
   },
   "hits": {
      "total": 3,
      "max_score": 1,
      "hits": [
         {
            "_index": "haystack",
            "_type": "modelresult",
            "_id": "csi.geoname.4075977",
            "_score": 1,
            "_source": {
               "name_auto": "Midfield",
            }
         },
         {
            "_index": "haystack",
            "_type": "modelresult",
            "_id": "csi.geoname.4075984",
            "_score": 1,
            "_source": {
               "name_auto": "Midland City",
            }
         },
         {
            "_index": "haystack",
            "_type": "modelresult",
            "_id": "csi.geoname.4075989",
            "_score": 1,
            "_source": {
               "name_auto": "Midway",
            }
         }
      ]
   }
}
Run Code Online (Sandbox Code Playgroud)

不同的例子的行为是相同的.我的猜测是,通过所有可能的"min_gram"字符组分割和分析字符串干草堆,这就是它返回错误结果的原因.

我不确定我是在做什么还是在理解错误,如果这是干草堆应该如何工作,但我需要干草堆结果与弹性搜索结果相匹配.

那么,我该如何解决问题或使其有效?

我的总结对象如下所示:

模型:

class Geoname(models.Model):
    id = models.IntegerField(primary_key=True)
    name = models.CharField(max_length=255)
Run Code Online (Sandbox Code Playgroud)

指数:

class GeonameIndex(indexes.SearchIndex, indexes.Indexable):
    text = indexes.CharField(document=True, use_template=True)
    name_auto = indexes.EdgeNgramField(model_attr='name')

    def get_model(self):
        return Geoname
Run Code Online (Sandbox Code Playgroud)

制图:

modelresult: {
    _boost: {
        name: "boost",
        null_value: 1
    },
    properties: {
        django_ct: {
            type: "string"
        },
        django_id: {
            type: "string"
        },
        name_auto: {
            type: "string",
            store: true,
            term_vector: "with_positions_offsets",
            analyzer: "edgengram_analyzer"
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

谢谢.

tuf*_*fla 11

深入研究代码后,我发现haystack生成的搜索是:

{
  "query":{
     "filtered":{
        "filter":{
           "fquery":{
              "query":{
                 "query_string":{
                    "query": "django_ct:(csi.geoname)"
                 }
              },
              "_cache":false
           }
        },
        "query":{
           "query_string":{
              "query": "name_auto:(mid)",
              "default_operator":"or",
              "default_field":"text",
              "auto_generate_phrase_queries":true,
              "analyze_wildcard":true
           }
        }
     }
  },
  "from":0,
  "size":6
}
Run Code Online (Sandbox Code Playgroud)

在elasticsearch中运行此查询,结果显示了haystack显示的相同6个对象...但是如果我添加到"query_string"

"analyzer": "standard"
Run Code Online (Sandbox Code Playgroud)

它按预期工作.因此,我们的想法是能够为该领域设置不同的搜索分析器.

基于@ user954994答案的链接和这篇文章的解释,我最终做的工作是:

  1. 我创建了自定义elasticsearch后端,添加了一个基于标准分析器的新自定义分析器.
  2. 我添加了一个自定义EdgeNgramField,启用了为索引设置特定分析器(index_analyzer)和另一个搜索分析器(search_analyzer)的方法.

所以,我的新设置是:

ELASTICSEARCH_INDEX_SETTINGS = {
    'settings': {
        "analysis": {
            "analyzer": {
                "ngram_analyzer": {
                    "type": "custom",
                    "tokenizer": "lowercase",
                    "filter": ["haystack_ngram"]
                },
                "edgengram_analyzer": {
                    "type": "custom",
                    "tokenizer": "lowercase",
                    "filter": ["haystack_edgengram"]
                },
                "suggest_analyzer": {
                    "type":"custom",
                    "tokenizer":"standard",
                    "filter":[
                        "standard",
                        "lowercase",
                        "asciifolding"
                    ]
                },
            },
            "tokenizer": {
                "haystack_ngram_tokenizer": {
                    "type": "nGram",
                    "min_gram": 3,
                    "max_gram": 15,
                },
                "haystack_edgengram_tokenizer": {
                    "type": "edgeNGram",
                    "min_gram": 2,
                    "max_gram": 15,
                    "side": "front"
                }
            },
            "filter": {
                "haystack_ngram": {
                    "type": "nGram",
                    "min_gram": 3,
                    "max_gram": 15
                },
                "haystack_edgengram": {
                    "type": "edgeNGram",
                    "min_gram": 2,
                    "max_gram": 15
                }
            }
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

我的新自定义build_schema方法如下所示:

def build_schema(self, fields):
    content_field_name, mapping = super(ConfigurableElasticBackend,
                                          self).build_schema(fields)

    for field_name, field_class in fields.items():
        field_mapping = mapping[field_class.index_fieldname]

        index_analyzer = getattr(field_class, 'index_analyzer', None)
        search_analyzer = getattr(field_class, 'search_analyzer', None)
        field_analyzer = getattr(field_class, 'analyzer', self.DEFAULT_ANALYZER)

        if field_mapping['type'] == 'string' and field_class.indexed:
            if not hasattr(field_class, 'facet_for') and not field_class.field_type in('ngram', 'edge_ngram'):
                field_mapping['analyzer'] = field_analyzer

        if index_analyzer and search_analyzer:
            field_mapping['index_analyzer'] = index_analyzer
            field_mapping['search_analyzer'] = search_analyzer
            del(field_mapping['analyzer'])

        mapping.update({field_class.index_fieldname: field_mapping})
    return (content_field_name, mapping)
Run Code Online (Sandbox Code Playgroud)

在重建索引之后,我的映射如下所示:

modelresult: {
   _boost: {
       name: "boost",
       null_value: 1
   },
   properties: {
       django_ct: {
           type: "string"
       },
       django_id: {
           type: "string"
       },
       name_auto: {
           type: "string",
           store: true,
           term_vector: "with_positions_offsets",
           index_analyzer: "edgengram_analyzer",
           search_analyzer: "suggest_analyzer"
       }
   }
}
Run Code Online (Sandbox Code Playgroud)

现在一切都按预期工作了!

更新:

贝娄你会找到澄清这部分的代码:

  1. 我创建了自定义elasticsearch后端,添加了一个基于标准分析器的新自定义分析器.
  2. 我添加了一个自定义EdgeNgramField,启用了为索引设置特定分析器(index_analyzer)和另一个搜索分析器(search_analyzer)的方法.

进入我的app search_backends.py:

from django.conf import settings
from haystack.backends.elasticsearch_backend import ElasticsearchSearchBackend
from haystack.backends.elasticsearch_backend import ElasticsearchSearchEngine
from haystack.fields import EdgeNgramField as BaseEdgeNgramField


# Custom Backend 
class CustomElasticBackend(ElasticsearchSearchBackend):

    DEFAULT_ANALYZER = None

    def __init__(self, connection_alias, **connection_options):
        super(CustomElasticBackend, self).__init__(
                                connection_alias, **connection_options)
        user_settings = getattr(settings, 'ELASTICSEARCH_INDEX_SETTINGS', None)
        self.DEFAULT_ANALYZER = getattr(settings, 'ELASTICSEARCH_DEFAULT_ANALYZER', "snowball")
        if user_settings:
            setattr(self, 'DEFAULT_SETTINGS', user_settings)

    def build_schema(self, fields):
        content_field_name, mapping = super(CustomElasticBackend,
                                              self).build_schema(fields)

        for field_name, field_class in fields.items():
            field_mapping = mapping[field_class.index_fieldname]

            index_analyzer = getattr(field_class, 'index_analyzer', None)
            search_analyzer = getattr(field_class, 'search_analyzer', None)
            field_analyzer = getattr(field_class, 'analyzer', self.DEFAULT_ANALYZER)

            if field_mapping['type'] == 'string' and field_class.indexed:
                if not hasattr(field_class, 'facet_for') and not field_class.field_type in('ngram', 'edge_ngram'):
                    field_mapping['analyzer'] = field_analyzer

            if index_analyzer and search_analyzer:
                field_mapping['index_analyzer'] = index_analyzer
                field_mapping['search_analyzer'] = search_analyzer
                del(field_mapping['analyzer'])

            mapping.update({field_class.index_fieldname: field_mapping})
        return (content_field_name, mapping)


class CustomElasticSearchEngine(ElasticsearchSearchEngine):
    backend = CustomElasticBackend


# Custom field
class CustomFieldMixin(object):

    def __init__(self, **kwargs):
        self.analyzer = kwargs.pop('analyzer', None)
        self.index_analyzer = kwargs.pop('index_analyzer', None)
        self.search_analyzer = kwargs.pop('search_analyzer', None)
        super(CustomFieldMixin, self).__init__(**kwargs)


class CustomEdgeNgramField(CustomFieldMixin, BaseEdgeNgramField):
    pass
Run Code Online (Sandbox Code Playgroud)

我的索引定义如下:

class MyIndex(indexes.SearchIndex, indexes.Indexable):
    text = indexes.CharField(document=True, use_template=True)
    name_auto = CustomEdgeNgramField(model_attr='name', index_analyzer="edgengram_analyzer", search_analyzer="suggest_analyzer")
Run Code Online (Sandbox Code Playgroud)

最后,设置当然使用haystack连接定义的自定义后端:

HAYSTACK_CONNECTIONS = {
    'default': {
        'ENGINE': 'my_app.search_backends.CustomElasticSearchEngine',
        'URL': 'http://localhost:9200',
        'INDEX_NAME': 'index'
    },
}
Run Code Online (Sandbox Code Playgroud)


小智 1

嗯,我遇到了类似的问题,我的策略是制作一个自定义后端。

完整的说明可以在以下位置找到:

http://www.wellfireinteractive.com/blog/custom-haystack-elasticsearch-backend/

这对我有用!

希望这可以帮助。