例
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
print s
1 5
2 4
3 3
4 2
5 1
Run Code Online (Sandbox Code Playgroud)
有没有一种有效的方法来创建一个系列.例如,在每一行中包含滞后值(在此示例中最多滞后2)
3 [3, 4, 5]
4 [2, 3, 4]
5 [1, 2, 3]
Run Code Online (Sandbox Code Playgroud)
这相当于s = pd.Series([[3,4,5],[2,3,4],[1,2,3]],index = [3,4,5])
对于具有很长时间序列的数据帧,如何以高效的方式完成这项工作?
谢谢
看到答案后编辑
好的,最后我实现了这个功能:
def buildLaggedFeatures(s,lag=2,dropna=True):
'''
Builds a new DataFrame to facilitate regressing over all possible lagged features
'''
if type(s) is pd.DataFrame:
new_dict={}
for col_name in s:
new_dict[col_name]=s[col_name]
# create lagged Series
for l in range(1,lag+1):
new_dict['%s_lag%d' %(col_name,l)]=s[col_name].shift(l)
res=pd.DataFrame(new_dict,index=s.index)
elif type(s) is pd.Series:
the_range=range(lag+1)
res=pd.concat([s.shift(i) for i in the_range],axis=1)
res.columns=['lag_%d' %i for i in the_range]
else:
print 'Only works for DataFrame or Series'
return None
if dropna:
return res.dropna()
else:
return res
Run Code Online (Sandbox Code Playgroud)
它生成所需的输出并管理生成的DataFrame中列的命名.
对于系列作为输入:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res=buildLaggedFeatures(s,lag=2,dropna=False)
lag_0 lag_1 lag_2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
Run Code Online (Sandbox Code Playgroud)
并作为输入的DataFrame:
s2=s=pd.DataFrame({'a':[5,4,3,2,1], 'b':[50,40,30,20,10]},index=[1,2,3,4,5])
res2=buildLaggedFeatures(s2,lag=2,dropna=True)
a a_lag1 a_lag2 b b_lag1 b_lag2
3 3 4 5 30 40 50
4 2 3 4 20 30 40
5 1 2 3 10 20 30
Run Code Online (Sandbox Code Playgroud)
And*_*den 46
如上所述,值得研究一下rolling_函数,这意味着你将无法获得尽可能多的副本.
In [11]: pd.concat([s, s.shift(), s.shift(2)], axis=1)
Out[11]:
0 1 2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
In [12]: pd.concat([s, s.shift(), s.shift(2)], axis=1).dropna()
Out[12]:
0 1 2
3 3 4 5
4 2 3 4
5 1 2 3
Run Code Online (Sandbox Code Playgroud)
在这方面的工作将比列表更有效...
使用pandas DataFrame的非常简单的解决方案:
number_lags = 3
df = pd.DataFrame(data={'vals':[5,4,3,2,1]})
for lag in xrange(1, number_lags + 1):
df['lag_' + str(lag)] = df.vals.shift(lag)
#if you want numpy arrays with no null values:
df.dropna().values for numpy arrays
Run Code Online (Sandbox Code Playgroud)
我喜欢通过将列设为 a 将滞后数字放入列中MultiIndex。这样,列的名称就会被保留。
这是结果的示例:
# Setup
indx = pd.Index([1, 2, 3, 4, 5], name='time')
s=pd.Series(
[5, 4, 3, 2, 1],
index=indx,
name='population')
shift_timeseries_by_lags(pd.DataFrame(s), [0, 1, 2])
Run Code Online (Sandbox Code Playgroud)
结果:一个具有两个列标签的 MultiIndex DataFrame:原始标签(“population”)和新标签(“lag”):
解决方案:就像在公认的解决方案中一样,我们使用DataFrame.shift然后pandas.concat。
def shift_timeseries_by_lags(df, lags, lag_label='lag'):
return pd.concat([
shift_timeseries_and_create_multiindex_column(df, lag,
lag_label=lag_label)
for lag in lags], axis=1)
def shift_timeseries_and_create_multiindex_column(
dataframe, lag, lag_label='lag'):
return (dataframe.shift(lag)
.pipe(append_level_to_columns_of_dataframe,
lag, lag_label))
Run Code Online (Sandbox Code Playgroud)
我希望有一种简单的方法可以将标签列表附加到现有列。这是我的解决方案。
def append_level_to_columns_of_dataframe(
dataframe, new_level, name_of_new_level, inplace=False):
"""Given a (possibly MultiIndex) DataFrame, append labels to the column
labels and assign this new level a name.
Parameters
----------
dataframe : a pandas DataFrame with an Index or MultiIndex columns
new_level : scalar, or arraylike of length equal to the number of columns
in `dataframe`
The labels to put on the columns. If scalar, it is broadcast into a
list of length equal to the number of columns in `dataframe`.
name_of_new_level : str
The label to give the new level.
inplace : bool, optional, default: False
Whether to modify `dataframe` in place or to return a copy
that is modified.
Returns
-------
dataframe_with_new_columns : pandas DataFrame with MultiIndex columns
The original `dataframe` with new columns that have the given `level`
appended to each column label.
"""
old_columns = dataframe.columns
if not hasattr(new_level, '__len__') or isinstance(new_level, str):
new_level = [new_level] * dataframe.shape[1]
if isinstance(dataframe.columns, pd.MultiIndex):
new_columns = pd.MultiIndex.from_arrays(
old_columns.levels + [new_level],
names=(old_columns.names + [name_of_new_level]))
elif isinstance(dataframe.columns, pd.Index):
new_columns = pd.MultiIndex.from_arrays(
[old_columns] + [new_level],
names=([old_columns.name] + [name_of_new_level]))
if inplace:
dataframe.columns = new_columns
return dataframe
else:
copy_dataframe = dataframe.copy()
copy_dataframe.columns = new_columns
return copy_dataframe
Run Code Online (Sandbox Code Playgroud)
更新:我从这个解决方案中学到了另一种在列中放置新级别的方法,这使得没有必要使用append_level_to_columns_of_dataframe:
def shift_timeseries_by_lags_v2(df, lags, lag_label='lag'):
return pd.concat({
'{lag_label}_{lag_number}'.format(lag_label=lag_label, lag_number=lag):
df.shift(lag)
for lag in lags},
axis=1)
Run Code Online (Sandbox Code Playgroud)
这是结果shift_timeseries_by_lags_v2(pd.DataFrame(s), [0, 1, 2]):
小智 5
对于延迟应用于“col name”的数据帧 df,您可以使用 shift 函数。
df['lag1']=df['col name'].shift(1)
df['lag2']=df['col name'].shift(2)
Run Code Online (Sandbox Code Playgroud)
这是一个很酷的单行代码,用于_lagN在列名中带有后缀的滞后特征使用pd.concat:
lagged = pd.concat([s.shift(lag).rename('{}_lag{}'.format(s.name, lag+1)) for lag in range(3)], axis=1).dropna()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
30619 次 |
| 最近记录: |