Spa*_*dan 24 language-agnostic algorithm math performance
资料来源:AMAZON访谈问题
给定点P和二维空间中的其他N个点,找到最接近 P 的N个点中的K个点.
这样做的最佳方式是什么?
这个Wiki页面在构建算法时没有提供太多帮助.任何想法/接近人.
Тол*_*оля 35
解决方案1使堆大小为K并通过最小距离O(NLogK)复杂度收集点.
解决方案2:获取大小为N的数组并按距离排序.应该使用QuickSort(Hoare修改).作为答案采取前K点.这也是NlogN的复杂性,但可以优化以近似O(N).如果跳过不必要的子数组的排序.当您将数组拆分为2个子数组时,您应该只接受Kth索引所在的数组.复杂度将是:N + N/2 + N/4 + ... = O(N).
解决方案3:在结果数组中搜索Kth元素并获取所有小点然后建立.存在O(N) alghoritm,类似于搜索中位数.
注意:最好使用sqr of distance来避免sqrt操作,如果point有整数坐标,它会更快.
面试答案更好地使用解决方案2或3.
小智 5
解决方案1
private List<Point> nearestKPoint_1(List<Point> list, final Point center, int k) {
List<Point> ans = new ArrayList<>();
PriorityQueue<Point> maxHeap = new PriorityQueue<>(k + 1, new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
return distance(center, o2) - distance(center, o1);
}
});
for (Point p : list) {
maxHeap.offer(p);
if (maxHeap.size() > k) {
maxHeap.poll();
}
}
Iterator<Point> i = maxHeap.iterator();
while (i.hasNext()) {
ans.add(i.next());
}
return ans;
}
public int distance(Point p1, Point p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static class Point {
int x;
int y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Point point = (Point) o;
if (x != point.x) return false;
return y == point.y;
}
@Override
public int hashCode() {
int result = x;
result = 31 * result + y;
return result;
}
}
Run Code Online (Sandbox Code Playgroud)
解决方案2
private List<Point> nearestKPoint_2(List<Point> list, final Point center, int k) {
List<Point> ans = new ArrayList<>();
Distance[] nums = new Distance[list.size()];
for (int i = 0; i < nums.length; i++) {
nums[i] = new Distance(distance(center, list.get(i)), i);
}
quickSelect(nums, k);
for (int i = 0; i < k; i++) {
ans.add(list.get(nums[i].i));
}
return ans;
}
private void quickSelect(Distance[] nums, int k) {
int start = 0, end = nums.length - 1;
while (start < end) {
int p = partition(nums, start, end);
if (p == k) {
return;
} else if (p < k) {
start = p + 1;
} else {
end = p - 1;
}
}
}
private int partition(Distance[] nums, int start, int end) {
Distance pivot = nums[start];
int i = start, j = end + 1;
while (true) {
while (i < end && nums[++i].compareTo(pivot) < 0);
while (j > start && nums[--j].compareTo(pivot) > 0);
if (i >= j) {
break;
}
swap(nums, i, j);
}
swap(nums, start, j);
return j;
}
private void swap(Distance[] nums, int i, int j) {
Distance tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
class Distance implements Comparable<Distance> {
int d;
int i;
public Distance(int d, int i) {
this.d = d;
this.i = i;
}
@Override
public int compareTo(Distance o) {
return this.d - o.d;
}
}
Run Code Online (Sandbox Code Playgroud)