减少CUDA

Nar*_*aki 2 cuda reduction thrust cub

我刚刚开始学习CUDA编程,我对减少有些困惑.

我知道全局内存与共享内存相比有很多访问延迟,但是我可以使用全局内存来(至少)模拟类似于共享内存的行为吗?

例如,我想总结一个长度正好的大数组的元素BLOCK_SIZE * THREAD_SIZE(网格和块的维度都是幂2),我试图使用下面的代码:

    __global__ void parallelSum(unsigned int* array) {

    unsigned int totalThreadsNum = gridDim.x * blockDim.x;
    unsigned int idx = blockDim.x * blockIdx.x + threadIdx.x;

    int i = totalThreadsNum / 2;
    while (i != 0) {
            if (idx < i) {
                array[idx] += array[idx + i];
        }
        __syncthreads();
        i /= 2;
    }
}
Run Code Online (Sandbox Code Playgroud)

我比较了这段代码的结果和在主机上串行生成的结果,奇怪的是:有时结果是相同的,但有时它们显然是不同的.在这里使用全局内存是否有任何原因?

Jac*_*ern 5

汤姆已经回答了这个问题.在他的回答中,他建议使用ThrustCUB来减少CUDA.

在这里,我提供了一个关于如何使用两个库来执行缩减的完整工作示例.

#define CUB_STDERR

#include <stdio.h>

#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>

#include <cub/device/device_reduce.cuh>

#include "TimingGPU.cuh"
#include "Utilities.cuh"

using namespace cub;

/********/
/* MAIN */
/********/
int main() {

    const int N = 8388608;

    gpuErrchk(cudaFree(0));

    float *h_data       = (float *)malloc(N * sizeof(float));
    float h_result = 0.f;

    for (int i=0; i<N; i++) {
        h_data[i] = 3.f;
        h_result = h_result + h_data[i];
    }

    TimingGPU timerGPU;

    float *d_data;          gpuErrchk(cudaMalloc((void**)&d_data, N * sizeof(float)));
    gpuErrchk(cudaMemcpy(d_data, h_data, N * sizeof(float), cudaMemcpyHostToDevice));

    /**********/
    /* THRUST */
    /**********/
    timerGPU.StartCounter();
    thrust::device_ptr<float> wrapped_ptr = thrust::device_pointer_cast(d_data);
    float h_result1 = thrust::reduce(wrapped_ptr, wrapped_ptr + N);
    printf("Timing for Thrust = %f\n", timerGPU.GetCounter());

    /*******/
    /* CUB */
    /*******/
    timerGPU.StartCounter();
    float           *h_result2 = (float *)malloc(sizeof(float));
    float           *d_result2; gpuErrchk(cudaMalloc((void**)&d_result2, sizeof(float)));
    void            *d_temp_storage = NULL;
    size_t          temp_storage_bytes = 0;

    DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_data, d_result2, N);
    gpuErrchk(cudaMalloc((void**)&d_temp_storage, temp_storage_bytes));
    DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_data, d_result2, N);

    gpuErrchk(cudaMemcpy(h_result2, d_result2, sizeof(float), cudaMemcpyDeviceToHost));

    printf("Timing for CUB = %f\n", timerGPU.GetCounter());

    printf("Results:\n");
    printf("Exact: %f\n", h_result);
    printf("Thrust: %f\n", h_result1);
    printf("CUB: %f\n", h_result2[0]);

}
Run Code Online (Sandbox Code Playgroud)

请注意,由于不同的底层哲学,CUB可能比Thrust快一些,因为CUB会留下性能关键的细节,例如算法的确切选择以及未绑定和用户手中的并发程度.通过这种方式,可以调整这些参数,以便最大化特定体系结构和应用程序的性能.

CUB in Action中报告了计算数组的欧几里德范数的比较- 一些使用CUB模板库的简单示例.