使用距离矩阵在Pandas Dataframe中的行之间进行距离计算

cmi*_*er8 10 python time-series matrix euclidean-distance pandas

我有以下Pandas DataFrame:

In [31]:
import pandas as pd
sample = pd.DataFrame({'Sym1': ['a','a','a','d'],'Sym2':['a','c','b','b'],'Sym3':['a','c','b','d'],'Sym4':['b','b','b','a']},index=['Item1','Item2','Item3','Item4'])
In [32]: print(sample)
Out [32]:
      Sym1 Sym2 Sym3 Sym4
Item1    a    a    a    b
Item2    a    c    c    b
Item3    a    b    b    b
Item4    d    b    d    a
Run Code Online (Sandbox Code Playgroud)

我想找到一种优雅的方法来Item根据这个距离矩阵得到每个距离:

In [34]:
DistMatrix = pd.DataFrame({'a': [0,0,0.67,1.34],'b':[0,0,0,0.67],'c':[0.67,0,0,0],'d':[1.34,0.67,0,0]},index=['a','b','c','d'])
print(DistMatrix)
Out[34]:
      a     b     c     d
a  0.00  0.00  0.67  1.34
b  0.00  0.00  0.00  0.67
c  0.67  0.00  0.00  0.00
d  1.34  0.67  0.00  0.00 
Run Code Online (Sandbox Code Playgroud)

例如Item1,Item2将比较aaab- > accb- 使用距离矩阵,这将是0+0.67+0.67+0=1.34

理想输出:

       Item1   Item2  Item3  Item4
Item1      0    1.34     0    2.68
Item2     1.34    0      0    1.34
Item3      0      0      0    2.01
Item4     2.68  1.34   2.01    0
Run Code Online (Sandbox Code Playgroud)

sha*_*ker 21

这是一个老问题,但有一个Scipy函数可以做到这一点:

from scipy.spatial.distance import pdist, squareform

distances = pdist(sample.values, metric='euclidean')
dist_matrix = squareform(distances)
Run Code Online (Sandbox Code Playgroud)

pdist在Numpy矩阵上运行,并且DataFrame.values是数据框的基础Numpy NDarray表示.该metric参数允许您选择几个内置距离度量中的一个,或者您可以传入任何二进制函数以使用自定义距离.这是非常强大的,根据我的经验,非常快.结果是一个"平面"数组,它只包含距离矩阵的上三角形(因为它是对称的),不包括对角线(因为它总是为0).squareform然后将这种扁平形式翻译成一个完整的矩阵.

文档有更多的信息,其中包括了许多内置的距离函数的数学纲要.

  • (这是这个帖子上更好/最好的答案) (4认同)

Mic*_*wen 7

对于大数据,我找到了一种快速的方法来做到这一点。假设您的数据已经是 np.array 格式,命名为 a。

from sklearn.metrics.pairwise import euclidean_distances
dist = euclidean_distances(a, a)
Run Code Online (Sandbox Code Playgroud)

以下是比较两种方法所需时间的实验:

a = np.random.rand(1000,1000)
import time 
time1 = time.time()
distances = pdist(a, metric='euclidean')
dist_matrix = squareform(distances)
time2 = time.time()
time2 - time1  #0.3639109134674072

time1 = time.time()
dist = euclidean_distances(a, a)
time2 = time.time()
time2-time1  #0.08735871315002441
Run Code Online (Sandbox Code Playgroud)


beh*_*uri 5

这是需要做的两倍的工作,但技术上也适用于非对称距离矩阵(无论这意味着什么)

pd.DataFrame ( { idx1: { idx2:sum( DistMatrix[ x ][ y ]
                                  for (x, y) in zip( row1, row2 ) ) 
                         for (idx2, row2) in sample.iterrows( ) } 
                 for (idx1, row1 ) in sample.iterrows( ) } )
Run Code Online (Sandbox Code Playgroud)

您可以通过将其分成几部分来使其更具可读性:

# a helper function to compute distance of two items
dist = lambda xs, ys: sum( DistMatrix[ x ][ y ] for ( x, y ) in zip( xs, ys ) )

# a second helper function to compute distances from a given item
xdist = lambda x: { idx: dist( x, y ) for (idx, y) in sample.iterrows( ) }

# the pairwise distance matrix
pd.DataFrame( { idx: xdist( x ) for ( idx, x ) in sample.iterrows( ) } )
Run Code Online (Sandbox Code Playgroud)