Eri*_*own 63 python dataframe pandas
我有两个数据帧.例子:
df1:
Date Fruit Num Color
2013-11-24 Banana 22.1 Yellow
2013-11-24 Orange 8.6 Orange
2013-11-24 Apple 7.6 Green
2013-11-24 Celery 10.2 Green
df2:
Date Fruit Num Color
2013-11-24 Banana 22.1 Yellow
2013-11-24 Orange 8.6 Orange
2013-11-24 Apple 7.6 Green
2013-11-24 Celery 10.2 Green
2013-11-25 Apple 22.1 Red
2013-11-25 Orange 8.6 Orange
Run Code Online (Sandbox Code Playgroud)
每个数据帧都以Date作为索引.两个数据帧都具有相同的结构.
我想要做的是比较这两个数据帧,并找出df2中哪些行不在df1中.我想比较日期(索引)和第一列(Banana,APple等),看看它们是否存在于df2和df1中.
我尝试过以下方法:
对于第一种方法,我得到了这个错误:"异常:只能比较标记相同的DataFrame对象".我已经尝试删除日期作为索引,但得到相同的错误.
在第三种方法中,我得到断言返回False但无法弄清楚如何实际看到不同的行.
任何指针都会受到欢迎
alk*_*lko 71
此方法df1 != df2仅适用于具有相同行和列的数据帧.实际上,所有数据帧轴都与_indexed_same方法进行比较,如果发现差异,则会引发异常,即使在列/索引顺序中也是如此.
如果我找到了你,你想要找不到变化,而是对称差异.为此,一种方法可能是连接数据帧:
>>> df = pd.concat([df1, df2])
>>> df = df.reset_index(drop=True)
Run Code Online (Sandbox Code Playgroud)
通过...分组
>>> df_gpby = df.groupby(list(df.columns))
Run Code Online (Sandbox Code Playgroud)
获取唯一记录的索引
>>> idx = [x[0] for x in df_gpby.groups.values() if len(x) == 1]
Run Code Online (Sandbox Code Playgroud)
过滤
>>> df.reindex(idx)
Date Fruit Num Color
9 2013-11-25 Orange 8.6 Orange
8 2013-11-25 Apple 22.1 Red
Run Code Online (Sandbox Code Playgroud)
lee*_*sej 48
更新和放置,在其他人更容易找到的地方,ling对jur上面的回复的评论。
df_diff = pd.concat([df1,df2]).drop_duplicates(keep=False)
Run Code Online (Sandbox Code Playgroud)
使用这些 DataFrame 进行测试:
# with import pandas as pd
df1 = pd.DataFrame({
'Date':['2013-11-24','2013-11-24','2013-11-24','2013-11-24'],
'Fruit':['Banana','Orange','Apple','Celery'],
'Num':[22.1,8.6,7.6,10.2],
'Color':['Yellow','Orange','Green','Green'],
})
df2 = pd.DataFrame({
'Date':['2013-11-24','2013-11-24','2013-11-24','2013-11-24','2013-11-25','2013-11-25'],
'Fruit':['Banana','Orange','Apple','Celery','Apple','Orange'],
'Num':[22.1,8.6,7.6,10.2,22.1,8.6],
'Color':['Yellow','Orange','Green','Green','Red','Orange'],
})
Run Code Online (Sandbox Code Playgroud)
结果如下:
# for df1
Date Fruit Num Color
0 2013-11-24 Banana 22.1 Yellow
1 2013-11-24 Orange 8.6 Orange
2 2013-11-24 Apple 7.6 Green
3 2013-11-24 Celery 10.2 Green
# for df2
Date Fruit Num Color
0 2013-11-24 Banana 22.1 Yellow
1 2013-11-24 Orange 8.6 Orange
2 2013-11-24 Apple 7.6 Green
3 2013-11-24 Celery 10.2 Green
4 2013-11-25 Apple 22.1 Red
5 2013-11-25 Orange 8.6 Orange
# for df_diff
Date Fruit Num Color
4 2013-11-25 Apple 22.1 Red
5 2013-11-25 Orange 8.6 Orange
Run Code Online (Sandbox Code Playgroud)
jur*_*jur 16
将数据帧传递到字典中的concat会产生一个多索引数据框,您可以从中轻松删除重复项,从而产生具有数据帧之间差异的多索引数据框:
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
DF1 = StringIO("""Date Fruit Num Color
2013-11-24 Banana 22.1 Yellow
2013-11-24 Orange 8.6 Orange
2013-11-24 Apple 7.6 Green
2013-11-24 Celery 10.2 Green
""")
DF2 = StringIO("""Date Fruit Num Color
2013-11-24 Banana 22.1 Yellow
2013-11-24 Orange 8.6 Orange
2013-11-24 Apple 7.6 Green
2013-11-24 Celery 10.2 Green
2013-11-25 Apple 22.1 Red
2013-11-25 Orange 8.6 Orange""")
df1 = pd.read_table(DF1, sep='\s+')
df2 = pd.read_table(DF2, sep='\s+')
#%%
dfs_dictionary = {'DF1':df1,'DF2':df2}
df=pd.concat(dfs_dictionary)
df.drop_duplicates(keep=False)
Run Code Online (Sandbox Code Playgroud)
结果:
Date Fruit Num Color
DF2 4 2013-11-25 Apple 22.1 Red
5 2013-11-25 Orange 8.6 Orange
Run Code Online (Sandbox Code Playgroud)
小智 14
# THIS WORK FOR ME
# Get all diferent values
df3 = pd.merge(df1, df2, how='outer', indicator='Exist')
df3 = df3.loc[df3['Exist'] != 'both']
# If you like to filter by a common ID
df3 = pd.merge(df1, df2, on="Fruit", how='outer', indicator='Exist')
df3 = df3.loc[df3['Exist'] != 'both']
Run Code Online (Sandbox Code Playgroud)
由于pandas >= 1.1.0我们有DataFrame.compare和Series.compare。
注意:该方法只能比较标记相同的 DataFrame 对象,这意味着具有相同行和列标签的 DataFrame。
df1 = pd.DataFrame({'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, np.NaN, 9]})
df2 = pd.DataFrame({'A': [1, 99, 3],
'B': [4, 5, 81],
'C': [7, 8, 9]})
A B C
0 1 4 7.0
1 2 5 NaN
2 3 6 9.0
A B C
0 1 4 7
1 99 5 8
2 3 81 9
Run Code Online (Sandbox Code Playgroud)
df1.compare(df2)
A B C
self other self other self other
1 2.0 99.0 NaN NaN NaN 8.0
2 NaN NaN 6.0 81.0 NaN NaN
Run Code Online (Sandbox Code Playgroud)
小智 6
df2从into获取现有数据df1:
dfe = df2[df2["Fruit"].isin(df1["Fruit"])]
Run Code Online (Sandbox Code Playgroud)
df2从into获取不存在的数据df1:
dfn = df2[~ df2["Fruit"].isin(df1["Fruit"])]
Run Code Online (Sandbox Code Playgroud)
您可以使用多个比较。
基于 alko 几乎对我有用的答案,除了过滤步骤(我得到的地方:)ValueError: cannot reindex from a duplicate axis,这是我使用的最终解决方案:
# join the dataframes
united_data = pd.concat([data1, data2, data3, ...])
# group the data by the whole row to find duplicates
united_data_grouped = united_data.groupby(list(united_data.columns))
# detect the row indices of unique rows
uniq_data_idx = [x[0] for x in united_data_grouped.indices.values() if len(x) == 1]
# extract those unique values
uniq_data = united_data.iloc[uniq_data_idx]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
116667 次 |
| 最近记录: |